Copyright © 2019 Nexenta Systems™, ALL RIGHTS RESERVED

Notice: No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying and recording, or stored in a database or retrieval system for any purpose, without the express written permission of Nexenta Systems (hereinafter referred to as “Nexenta”).

Nexenta reserves the right to make changes to this document at any time without notice and assumes no responsibility for its use. Nexenta products and services only can be ordered under the terms and conditions of Nexenta Systems’ applicable agreements. All of the features described in this document may not be available currently. Refer to the latest product announcement or contact your local Nexenta Systems sales office for information on feature and product availability. This document includes the latest information available at the time of publication.

Nexenta, NexentaStor, NexentaEdge, NexentaFusion, and NexentaCloud are registered trademarks of Nexenta Systems in the United States and other countries. All other trademarks, service marks, and company names in this document are properties of their respective owners.
Preface ... ix

1 Initial Configuration ... 1
 Introduction .. 1
 Using the CLI ... 1
 Post-Install Checks .. 2
 Changing Management Address 5
 Managing Users .. 5
 Create a New User ... 5
 Create a New User Group 6
 Add a Member to a User Group 7
 Configuring SMTP Email Service 8
 Uploading the SSL Certificate 10
 Updating the SSL Certificate 11
 Setting Up a Web Proxy .. 11
 What Comes Next? .. 12

2 Configuring NexentaStor 5.2 Appliances 13
 Summary of Storage and Cluster Configuration 13
 Verifying Enclosure and Disk Information 16
 Managing Chassis using IPMI 17
 View Sensor, Bays, or Disks of SES and IPMI 19
 Verify IPMI Device is Accessible 19
 Managing Network ... 21
 Verifying the Available Network Interface 21
 Assigning Addresses to Network Interfaces and Servers 21
 Creating a Network Route 22
 Aggregating NICs ... 23
 Using VLANs ... 23
 Configuring HA Cluster 24
 Configuring a Pool .. 27
Creating a Pool ... 27
Adding Spares, Cache Devices, and Log Disks 29
Smart-Sparing and Auto-Replace 30
Maintaining Pools (Scrub and Trim/Unmap) 30
Configuring HA Service for the Shared Pool 32
Creating and Sharing a File System 35
Creating a File System .. 35
Sharing a File System via SMB 36
Sharing a File System via NFS 40
Setting Quotas on File System 44
Setting User and Group Quotas 45
Creating and Sharing iSCSI Volumes 48
Creating Volume Groups and Volumes 48
Sharing iSCSI Volumes ... 49
Sharing to Any Host on the Network 50
Sharing to a Specific Set of iSCSI Initiators 51
Preparing iSCSI LUNs for Failover 51
Sharing FC Volumes ... 52
Changing the Default FC Ports 52
Switching Individual FC HBA Port Mode 52
Sharing a FC Volume .. 53
Sharing to a Specific Set of FC Initiators 54
Preparing FC LUNs for Failover 55
What Comes Next? ... 55

3 Data Protection .. 56
Protecting Data ... 56
Configuring Snapshots and Snapshot Schedules 57
Creating and Deleting Local Snapshots 57
Creating a Local Scheduled Snapshot Service 58
Managing Snapshots .. 59
Configuring High Performance Replication 61
About HPR .. 61
Definition of Terms .. 62
Preparing for HPR ...62
Licensing Requirements for the Replication Service65
Managing the HPR Password ...65
Configuring HPR Address to Send or Receive Replication Traffic66
Configuring a New Replication Service67
Managing the Created Replication Service70
Scheduling Replication Services71
Configuring NDMP for Backups73
Prerequisites ...73
Configuring and Managing NDMP73
Troubleshooting ...74
Using Virus Scan Engines ..75
About NexentaStor vscan ...75
Prerequisites ...75
Managing Virus Scan Services on a NexentaStor Appliance75
Setting File Size, Type ..76
Monitoring vscan Status ...76
Checking vscan Related Messages in the NexentaStor Syslog77
What Comes Next? ...78

4 Fault Management ..79
Alerts and Events ..80
Viewing NexentaStor Logs ...81
Dial-Home and Call-Home Information84
Bundle Services ...85
Creating a Support Bundle ..85
Verifying the Bundle ..86
Download the Bundle Locally ...86
Default Support Bundle Protocol and Settings87
Modify Default Settings for Slow Connections88
Upload Support Bundles to Nexenta’s https/ftp Server88
Managing Boot Environments ..89
Creating a Boot Environment Checkpoint89
Rolling Back to a Boot Environment Checkpoint ...89
Viewing Existing Boot Environment Checkpoints ...89
Deleting a Boot Environment Checkpoint ...89
Backup and Restore of NexentaStor Boot Environment90
Backup Boot Environment of a Single Node ...90
Restore Boot Environment of a Single Node ...91
Backup Boot Environment of a HA Cluster ..93
Restore Boot Environment of a HA Cluster ..94
Deleting Existing Backup ..94
Troubleshooting/Replacing Data Devices ..95
Clear Error Counters on Devices ...96
Other Pool Management Commands ...97
View the Resilver Status ...97
Identify Number of Unused Bays in a Storage Enclosure98
Modify Resilver/Scrub Priority ..98
Setting Resilver or Scrub Priority Globally On the System99
Overriding the Global Value by Setting Resilver/Scrub Priority on Per Pool Basis ...99
Reverting the Rescan/Scrub Explicit Value Set on a Pool to the Global Value ...100
Measuring Network Performance ...100
Diagnose Unsuccessful HA Service Start ..102
Visibility to Storage SAN ...102
Visibility to LUNs ..103
Save/Restore LUN Mappings from SMB/NFS Share104
Using SNMP for Fault Management ...105
About SNMP Traps ..105
About SNMP Manager and SNMP Agent ..106
Configure SNMP Agent on NexentaStor ...106
Set the Details of the SNMP Agent ...107
Enable SNMP Service ...107
Enable/Disable and Configure Custom SNMP Traps108
Fault Management Alerts (FMA) ..108
LinkUpDown Traps ..108
5 Advanced Configuration .. 112
 Configuring Additional REST Management IP Addresses 112
 Creating Named Administrator Accounts 114
 Setting Profile for a User Synchronously on Both Nodes 115
 Enable API Access to a New User 115
 Enable Read-Only Access to the API 116
 Create Named Admin Account with Admin Privileges 116
 Creating a Pool with Multiple SLOG Device Pairs 116
 Verifying Pool Creation ... 117
 List of SMB Features Supported in Each SMB Version 117
 Supported SMB protocols in NexentaStor 117
 Supported SMB features in each smb version 117
 Managing File Access Audit .. 119
 Sharing NFS and SMB Concurrently on a File System 121
 Managing Local Name-Based Rules 122
 Configuring Directory Based Identity Mapping 124
 Using IPMP ... 126
 About NexentaStor as LDAP-Client 128
 Advantages of Integrating NexentaStor with LDAP 128
 Supported LDAP Servers .. 128
 Configuring NexentaStor as LDAP client using a Specific Profile 129
 Configuring NexentaStor as LDAP client Manually 130
 Recommendations for Configuring NexentaStor as LDAP Client Manually 130
 Verifying the LDAP Client Configuration 131
 Retrieving Information from LDAP Directory 132
 Using LDAP Search .. 133
 Examples With and Without Attributes 134
Uninitializing NexentaStor LDAP Client .. 136
Configuring Write-Back Cache .. 136
Additional Resources ... 139
Preface

This documentation presents information specific to Nexenta products. The information is for reference purposes and is subject to change.

Intended Audience

This documentation is intended for Network Storage Administrators and assumes that you have experience with data storage concepts, such as NAS, SAN, NFS, and ZFS.

Documentation History

The following table lists the released revisions of this documentation.

Product Versions Applicable to this Documentation:

<table>
<thead>
<tr>
<th>Revision</th>
<th>Date</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ns-5.2-cliconfigguide-RevB</td>
<td>April, 2019</td>
<td>5.2.1 GA version</td>
</tr>
</tbody>
</table>

Contacting Support

Send your support questions and requests to support@nexenta.com.

Comments

Your comments and suggestions to improve this documentation are greatly appreciated. Send any feedback to doc.comments@nexenta.com and include the documentation title, number, and revision. Refer to specific pages, sections, and paragraphs whenever possible.
This chapter covers the following topics:

- Introduction
- Using the CLI
- Post-Install Checks
- Changing Management Address
- Managing Users
- Configuring SMTP Email Service
- Uploading the SSL Certificate
- What Comes Next?

Introduction

This document is intended to be read after installing NexentaStor appliance in your environment. This guide demonstrates the basic steps and commands to configure and manage NexentaStor 5.2 appliances using the CLI. We recommend that you use this document in conjunction with the following guides:

- NexentaStor 5.2 CLI Reference Guide
- NexentaStor 5.2 HA CLI Configuration Guide

Using the CLI

For additional help options when using the CLI commands, use the following:

Ctrl+C

Returns you to the prompt.

CLI@nexenta> help

Lists available CLI commands and UNIX-like utilities.

CLI@nexenta> man cli

Provides an overview of the CLI commands and the general options and output flags.

CLI@nexenta> man <command>

Displays the man page for a specific command. Use the Spacebar or arrows to move through the man page. Press q to return to the prompt.
Before you proceed with configuring pools, file systems, or volumes, review your baseline settings after installation from the CLI using the following commands.

<table>
<thead>
<tr>
<th>Task</th>
<th>Related CLI Command</th>
</tr>
</thead>
<tbody>
<tr>
<td>Verify software version installed</td>
<td>CLI@nexenta> software version</td>
</tr>
<tr>
<td>Verify the installed software and the boot environment</td>
<td>CLI@nexenta> software list</td>
</tr>
<tr>
<td>List available licenses</td>
<td>CLI@nexenta> license show</td>
</tr>
</tbody>
</table>

To use the High Availability (HA), continuous replication, fibre channel management, and All-flash optional features, license tokens for these must be activated and listed in the features row as shown in the following sample output. If these features are not enabled, contact sales@nexenta.com to obtain the feature license.

Sample output:
```
PROPERTY     VALUE
guid         534d4349-0002-6190-2500-6190250015b0
valid        yes
status       ok
type         ENTERPRISE-TRIAL(Nexenta Internal)
product      NexentaStor
version      5.x
licensee     Nexenta-abcd@nexenta.com
serial       SR-DEV-NS-201616578
features     allFlash, continuousReplication, scheduledReplication, fibrechannel
issued       Sun May 21 17:00:00 2018
expires      Tue August 29 16:00:00 2018
capacity     no limit
maintenance  Sun May 21 17:00:00 2018 - Tue Aug 29 16:00:00 2018 (valid)
```

See your system's baseline state

CLI@nexenta> system status
Check that the system services of interest are enabled

<table>
<thead>
<tr>
<th>CLI@nexenta> svc list</th>
</tr>
</thead>
<tbody>
<tr>
<td>ha: high-availability cluster services. Must be enabled for HA cluster configurations</td>
</tr>
<tr>
<td>idmap: identity mapping services. Must be enabled to have NexentaStor automatically map Unix and Windows identities on file systems concurrently shared over NFS and SMB</td>
</tr>
<tr>
<td>iscsit: iSCSI target service. Must be enabled to support sharing iSCSI LUNs</td>
</tr>
<tr>
<td>ldapclient: ldapclient. Must be enabled for NexentaStor to connect to directory services with LDAP.</td>
</tr>
<tr>
<td>ndmp: Network Data Management Protocol. Must be enabled for NexentaStor to support NDMP based backups.</td>
</tr>
<tr>
<td>nfs: Network File System services. Must be enabled for NexentaStor to support NFS shares.</td>
</tr>
<tr>
<td>ntp: Network Time Protocol. Must be enabled for NexentaStor to synchronize clocks with NTP servers.</td>
</tr>
<tr>
<td>sedctl: Self-Encrypted Drive control service. Must be enabled for NexentaStor to effectively discover and manage pool devices, SED or not.</td>
</tr>
<tr>
<td>smb: Server Message Block services. Must be enabled for NexentaStor to support SMB shares.</td>
</tr>
<tr>
<td>smbclient: SMB client service. Must be enabled for NexentaStor to connect as an SMB client to Active-Directory infrastructure.</td>
</tr>
<tr>
<td>stmf: SCSI Target Mode Framework service. Must be enabled for NexentaStor to support iSCSI or Fibre Channel target block services.</td>
</tr>
<tr>
<td>vscan: ICAP (Internet Content Adaptation Protocol) virus scanning service. Must be enabled for NexentaStor to support external virus scan engines to connect using ICAP.</td>
</tr>
</tbody>
</table>

Check the system date and time

1. Validate the system date and time

CLI@nexenta> config list system.date

<table>
<thead>
<tr>
<th>NAME</th>
<th>FLAGS</th>
<th>VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>system.date</td>
<td>--</td>
<td>Fri Mar 31 08:58:11 2018</td>
</tr>
</tbody>
</table>

2. To set the date and time

CLI@nexenta> config set system.date=3/31/2018 9:20:00
Check that NTP service is enabled and settings are correct

1. Set up NTP

```
CLI@nexenta> svc set servers=pool.ntp.org ntp
```

2. Check if ntp is online

```
CLI@nexenta> svc list ntp
NAME     DESCRIPTION  STATE
ntp       NTP client   online
```

3. Validate that the ntp server is set.

```
CLI@nexenta> config list system.date
CLI@nexenta> svc get all ntp
Name     Value
servers  ['pool.ntp.org']
```

List enclosures

```
CLI@nexenta> enclosure list
```

List available disks

```
CLI@nexenta> disk list
```

List available NICs

```
CLI@nexenta> inventory nic
```

List available links

```
CLI@nexenta> link list
```

List current routes

```
CLI@nexenta> route list
```

List configured IP addresses

```
CLI@nexenta> ip list
```

List network hosts and DNS servers.

```
CLI@nexenta> net list host
CLI@nexenta> net list dns
```

Check the system domain name

1. View the domain name that was set during the installation

```
CLI@nexenta> config get all system.domainName
```

2. To set or change the domain name

```
CLI@nexenta> config set system.domainName=company.corp
```
Changing Management Address

You must have set up a static IP for the management address during the installation of the appliance but if you need to change the management address after the installation run the following command:

```
CLI@nexenta> config set system.managementAddress=<IP>
```

However, to set explicit list of IP address for the system.managementAddress, see the section Configuring Additional REST Management IP Addresses.

Verify the changes made to the management IP address by running the following command.

```
CLI@nexenta> config get all system.managementAddress
```

<table>
<thead>
<tr>
<th>NAME</th>
<th>PROPERTY</th>
<th>VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>system.managementAddress</td>
<td>description</td>
<td>Management IP address</td>
</tr>
<tr>
<td>system.managementAddress</td>
<td>flags</td>
<td>--</td>
</tr>
<tr>
<td>system.managementAddress</td>
<td>name</td>
<td>system.managementAddress</td>
</tr>
<tr>
<td>system.managementAddress</td>
<td>schema</td>
<td><STRING></td>
</tr>
<tr>
<td>system.managementAddress</td>
<td>value</td>
<td>0.0.0.0</td>
</tr>
</tbody>
</table>

Managing Users

After installing and rebooting the NexentaStor appliance, you can log in using the admin username and the password you set up during installation.

- **To change the admin user password:**

  ```
  CLI@nexenta> user passwd [-p <password>] login
  ```

 Example:

  ```
  CLI@nexenta> user passwd -p <new password> admin
  ```

 The above command will allow you to change the password with restrictions stated in the Note below.

- **To change to a password that overrides the strict password policy:**

 In order to change to a password that overrides the strict password policy, you must use an additional parameter -i that overrides the restrictions and ignores the system password policy.

 Example:

  ```
  CLI@nexenta> user passwd -p <password> -i admin
  ```

Create a New User

You can create as many user accounts as needed. When creating a new user, you can specify the group the user belongs to.
1. Create new user.

 CLI@nexenta> user create [options] [-p <password>] [-g <group>] <login>

 Example:

 CLI@nexenta> user create -p 1234@abcd testuser

 The example shown here creates a new user “testuser” as default profile and will have no access to the appliance using the CLI or API. However, you can configure file share permissions for these users. Once you create a user, you may enable API access/admin privileges later.

 See Chapter 5, Advanced Configuration, Creating Named Administrator Accounts for information on enabling API access to a user or adding admin privileges to a new user.

 If you are creating a new user on a node that belongs to a cluster, then you have an option to create the user synchronously on both nodes using the “C” option in the command.

 Example:

 CLI@nexenta> user create -C -p 1234@abcd testuser

 Note: In a clustered environment if a user is created only on one node, it might cause inconsistency in system configuration.

2. Verify the user creation.

 CLI@nexenta> user list

 LOGIN UID PRIMARYGROUP COMMENT
 nobody 60001 nobody NFS Anonymous Access User
 admin 100 other -
 guest 101 other -
 testuser 102 other -

3. To query user groups:

 CLI@nexenta> group list

 NAME GID USERS
 nobody 60001 nobody
 noaccess 60002 noaccess
 nogroup 65534 nobody
 other 1000 testuser

Create a New User Group

4. To create a new user group called allaccess:

 CLI@nexenta> group create <group name>

 Example:

 CLI@nexenta> group create allaccess
If you are creating a new group on a node that belongs to a cluster, then you have an option to create the group synchronously on both nodes using the “C” option in the command.

Example: `group create -C allaccess`

Note: In a clustered environment if a group is created only on one node, it might cause inconsistency in system configuration.

5. Verify if the group is created.

```
CLI@nexenta> group list
NAME     GID    USERS
nobody   60001  nobody,testuser1
noaccess 60002  noaccess
nogroup  65534  nobody4
allaccess 100  -
```

Add a Member to a User Group

```
CLI@nexenta> user create -p 1234@abcd -g allaccess testuser2
NAME     GID    USERS
nobody   60001  nobody,testuser1
noaccess 60002  noaccess
nogroup  65534  nobody4
allaccess 100  testuser2
```

Note:

Passwords should be at least 9 characters long and contain at least 3 of the following classes of characters: lowercase, uppercase, numeric, and special (for example, !, @, #,$, %, ^). Passwords should not be based on English dictionary or slang words, nor English first names or surnames.

Post installation, it is possible to change user passwords and override the above mentioned strict restrictions, using -i option in the following command “user passwd -p <password> -i <login>”
Configuring SMTP Email Service

This section demonstrates how to set up SMTP mail server for NexentaStor. Many NexentaStor tasks, such as system failure notification, require that you properly configure the SMTP mail server.

The following table lists the parameters you configure for an SMTP server. Have this information ready before you begin to configure the SMTP server.

Table 1-1: SMTP Parameters

<table>
<thead>
<tr>
<th>SMTP property</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SMTP host</td>
<td>SMTP server hostname or IP address.</td>
</tr>
<tr>
<td>SMTP Server Port</td>
<td>Port for the SMTP server. Port 25 is the default, but some IPs deny its use due to the extensive spam and malware traffic this port receives. You can choose to configure another port. The default port changes to 465 when you select the Use SSL/TLS option.</td>
</tr>
<tr>
<td>SMTP User Name</td>
<td>Name that you use to access your e-mail. Login name for this SMTP server.</td>
</tr>
<tr>
<td>SMTP Password</td>
<td>Password that you use to access your e-mail. Password for the SMTP server login.</td>
</tr>
<tr>
<td>Sender email address</td>
<td>The mail address displayed in the Sender field for all emails originating from NexentaStor.</td>
</tr>
<tr>
<td>SMTP Authentication method</td>
<td>Method of SMTP authentication mechanism that your mail server uses. The options are: PLAIN, LOGIN, CRAM-MD5, XOAUTH2</td>
</tr>
<tr>
<td>Local admin email</td>
<td>Email address of the administrator, required for the recovery of lost passwords.</td>
</tr>
</tbody>
</table>

1. Query and modify the email address of your NexentaStor admin user:

 CLI@nexenta> config get value system.administratorEmail
 NAME FLAGS VALUE
 system.administratorEmail -- ''
 CLI@nexenta> config set system.administratorEmail=<email address>

2. Configure email notifications for alerts by querying and modifying the alert settings:

 CLI@nexenta> config get all alert
 NAME FLAGS VALUE
 alert.email.address -- ''
 alert.email.subscribe -- []

3. To turn on email alerts, set the email address.
CLI@nexenta> config set alert.email.address=abcd@nexenta.com
Now all alerts will be forwarded to the email address specified here.

4. You may also limit the alerts only to a specific group of alerts.

 CLI@nexenta> config set alert.email.subscribe=nef.stat.zpool.usage
 This sends only the “pool” usage alerts.

 CLI@nexenta> config set alert.email.subscribe=defect.sunos,fault.fs.zfs
 This sends only the software defect alerts.

5. Query and modify SMTP service attributes:

 CLI@nexenta> config list | grep smtp
 CLI@nexenta> config set <property>=value

 Example:

 config set smtp.host=smtp.gmail.com
 config set smtp.port=465
 config set smtp.authMethods=PLAIN
 config set smtp.user=abcd@gmail.com
 config set smtp.password=nexenta1
 config set smtp.security=ssl
 config set smtp.senderEmail=test@gmail.com

 Note: To type the password discretely, use the -i option as shown here.
 CLI@nexenta> config set smtp.password -i

6. Verify the properties you set using the following command:

 CLI@nexenta> config list | grep smtp

 smtp.authMethod -- PLAIN
 smtp.host -- ''
 smtp.password -- '**********'
 smtp.port -- 25
 smtp.rejectUnauthorized -- true
 smtp.security -- auto
 smtp.senderEmail -- ''
 smtp.timeout -- 15000
 smtp.user -- ''

7. To test sending email to your administrator using current SMTP settings:

 CLI@nexenta> system smtp-test
Uploading the SSL Certificate

NexentaStor uses a self-signed SSL certificate. You can update the SSL certificate if your company security policy requires to use a specific SSL certificate.

- To generate a new certificate:
 - Type
    ```
    CLI@nexenta> config set rest.certificate.generate=true
    ```
 - You have two options to upload an SSL certificate. You can generate a new certificate, archive and upload it from a remote SSL (http, https, ftp) server or from local certificate file. The files should be archived in the following formats:
 - cert.pem archived as zip, tar.gz, tar.bz2 for the public key
 - key.pem archived as zip, tar.gz, tar.bz2 for the private key

- To upload from a remote SSL server:
 - Type
    ```
    CLI@nexenta> config set rest.certificate.url=http://....
    ```
 - Example:
    ```
    ```

- Alternatively, to upload from a local file:
 - Type
 1. Create the filesystem
       ```
       CLI@nexenta> filesystem create demo/certificates
       ```
 2. Set the ACL from the CLI to access the files
       ```
       CLI@nexenta> acl set A+user:admin:read_set:allow demo/certificates
       CLI@nexenta> acl set A+everyone@:read_set,execute:allow demo/certificates
       ```
 3. Share out the file system to whatever protocol you need:
       ```
       CLI@nexenta> smb share demo/certificates
       CLI@nexenta> nfs share -o anon=root demo/certificates
       ```
 4. Copy the certs to SMB: \\<IP address of your NexentaStor appliance> \demo_certificates
 5. Set the certificates:
6. Reset back to the shipping certificate:
 CLI@nexenta> config set rest.certificate.generate = true

Updating the SSL Certificate

You can update the information in the SSL Certificate. These parameters will be reflected in the certificate information in your browser.

- **To view the SSL certificate:**
 1. Type
 CLI@nexenta> config get all rest.certificate

 | NAME | PROPERTY | VALUE | |
|---|---|---|---|
 | rest.certificate | description | HTTPS certificate used by REST and other |
 | | flags | -- |
 | rest.certificate | name | rest.certificate |
 | rest.certificate | schema | generate: <BOOL, true|false> |
 | | | sha256: <STRING> |
 | | | sha512: <STRING> |
 | | | url: <STRING> |
 | rest.certificate | value | sha256: D2:A8:...:DA:F0 |

- **To update the SSL certificate:**
 You can either use an Editor or edit it directly using the `config set -i rest.certificate=<value>` command.

- **To update, using an editor:**
 1. Type
 CLI@nexenta> config edit rest

 This opens the vi editor and lets you edit the certificate parameters.

Setting Up a Web Proxy

Configure the proxy server if you need to access the public internet. Here is a list of few use cases when you might need to set up a proxy:

- To access the repositories for upgrading NexentaStor software packages.
- To send support bundles to Nexenta.
- For NexentaStor to upload configuration and log information back to Nexenta support over http.
To configure the proxy server:

CLI@nexenta> config set system.webProxy = http://user@proxy/

Example:

CLI@nexenta> config set system.webProxy = http://nexenta@10.3.44.89:3128/
CLI@nexenta> config set system.webProxyPassword = password

To view the proxy server that you set up:

CLI@nexenta> config list system.webProxy

To unset the proxy:

CLI@nexenta> config reset system.webProxy

What Comes Next?

In the following chapter you learn how to provision NexentaStor appliances and manage them in your environment.
Configuring NexentaStor 5.2 Appliances

This chapter covers the following topics:

- Summary of Storage and Cluster Configuration
- Verifying Enclosure and Disk Information
- Managing Chassis using IPMI
- Managing Network
- Configuring HA Cluster
- Configuring a Pool
- Configuring HA Service for the Shared Pool
- Creating and Sharing a File System
- Setting Quotas on File System
- Setting User and Group Quotas
- Creating and Sharing iSCSI Volumes
- Sharing FC Volumes
- What Comes Next?

Summary of Storage and Cluster Configuration

The following table lists the management tasks that you can perform on a NexentaStor appliance(s). Using NexentaStor CLI, you can create a pool on a clustered or a non-clustered appliance, create filesystems and share them for anonymous access or authenticated access in workgroup mode or domain. For a clustered appliance, we can configure pools with a High Availability (HA) service for the pools to failover to the alternate node automatically when the cluster detects a system failure.

To start provisioning a NexentaStor appliance using NexentaStor CLI, complete the tasks in the order presented in this table.
<table>
<thead>
<tr>
<th>Task</th>
<th>Instructions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Identify disks associated with a NexentaStor appliance</td>
<td>See Verifying Enclosure and Disk Information and Managing Chassis using IPMI</td>
</tr>
<tr>
<td>Once you have JBODs attached to the appliance, you may want to review the disks that can be assigned as data, cache, spare, or log devices. This section covers the steps to:</td>
<td></td>
</tr>
<tr>
<td>• view all the enclosures and disks enclosed in a chassis.</td>
<td></td>
</tr>
<tr>
<td>• steps to start managing an IPMI-supported chassis using IPMI protocol.</td>
<td></td>
</tr>
<tr>
<td>Update NexentaStor appliance’s network (if needed)</td>
<td>See Managing Network</td>
</tr>
<tr>
<td>This section covers the steps to:</td>
<td></td>
</tr>
<tr>
<td>• verify that the network interface you configured during NexentaStor appliance installation is in place,</td>
<td></td>
</tr>
<tr>
<td>• configure aggregates and VLANs to optionally maximize the network throughput and performance; monitor their status.</td>
<td></td>
</tr>
<tr>
<td>Configure a pool for a single node appliance or clustered appliance</td>
<td>See Configuring HA Cluster and Configuring a Pool</td>
</tr>
<tr>
<td>Pools are the containers for all datasets such as filesystems, volume groups, and volumes. This section covers the steps to:</td>
<td></td>
</tr>
<tr>
<td>• identify the disks that can be used for creating a pool,</td>
<td></td>
</tr>
<tr>
<td>• create a pool with the desired redundancy characteristics,</td>
<td></td>
</tr>
<tr>
<td>• add cache devices, and disk logs to optimize performance,</td>
<td></td>
</tr>
<tr>
<td>• add spares to improve availability,</td>
<td></td>
</tr>
<tr>
<td>• add unmap support for SSDs to efficiently use the storage,</td>
<td></td>
</tr>
<tr>
<td>• schedule a scrub service to check the pool integrity.</td>
<td></td>
</tr>
<tr>
<td>Configure a shared pool HA service for pools to fail over (HA Cluster)</td>
<td>See Configuring a Pool, and Configuring HA Service for the Shared Pool</td>
</tr>
<tr>
<td>The primary benefit of an HA Cluster is for NexentaStor to detect storage system failures and transfer ownership of the shared pools to the alternate NexentaStor appliance. This section covers the steps to:</td>
<td></td>
</tr>
<tr>
<td>• add a shared pool to a HA service,</td>
<td></td>
</tr>
<tr>
<td>• configure a VIP for the clients to access.</td>
<td></td>
</tr>
</tbody>
</table>
Task | Instructions
--- | ---
Configure a filesystem
The filesystem is managed by multiple properties that enable the user to achieve maximum performance and optimization.
This section covers the steps to:
• create a filesystem,
• manage a filesystem.
See [Creating and Sharing a File System](#).

Share a Filesystem
NexentaStor consolidates a number of advanced capabilities to share a filesystem(s) over the network.
This section covers the steps to:
• share a filesystem using various sharing protocols (SMB, NFS), manage the Access Control Lists for the shares.
See [Creating and Sharing a File System](#).

Set user and group quota
This section covers the details to dynamically manage the disk quota for a user or a group.
See [Setting User and Group Quotas](#).

A volume group is a container for managing volume datasets.
These sections demonstrate how to do the following:
• Creating and managing volume groups and volumes
• Sharing iSCSI volumes
• Sharing to any host on the network
• Sharing to a specific set of iSCSI initiators
• Preparing iSCSI LUNs for fail over
• Sharing FC volumes
• Sharing to a specific set of FC initiators
• Preparing FC LUNS for fail over
See [Creating and Sharing iSCSI Volumes](#).
Verifying Enclosure and Disk Information

Before creating a new pool, you may want to identify the disks to be assigned as data, cache, or log devices. If you have a JBOD attached to a NexentaStor appliance, you can use the following commands to list all the disks belonging to an appliance to verify their health status and utilization.

1. **View the enclosure.**

   ```
   CLI@nexenta> enclosure list
   #  CHASSIS      LABEL  PRODUCT       VENDOR   BAYS  USED  SERIAL
   0  LEGACY_SAS   -      Onboard SAS   Nexenta  18    18    -
   1  LEGACY_SATA  -      Onboard SATA  Nexenta  2     2     -
   ```

2. **View the details of a specific enclosure.**

 CLI@nexenta> enclosure get all <enclosure>

 Example:

   ```
   CLI@nexenta> enclosure get all LEGACY_SATA
   NAME         PROPERTY        VALUE
   LEGACY_SATA  chassis         LEGACY_SATA
   LEGACY_SATA  interface       default
   LEGACY_SATA  #               1
   LEGACY_SATA  label           -
   LEGACY_SATA  model           Nexenta Onboard SATA
   LEGACY_SATA  product         Onboard SATA
   LEGACY_SATA  revision        v.1
   LEGACY_SATA  stringData      -
   LEGACY_SATA  vendor          Nexenta
   LEGACY_SATA  vendorSpecific  -
   LEGACY_SATA  bays            6
   LEGACY_SATA  designator      -
   LEGACY_SATA  serial          -
   LEGACY_SATA  used            6
   ```

3. **View the sensors for a given enclosure.**

 CLI@nexenta> enclosure sensor <enclosure>

4. **View the given disks along with their health status and utilization.** When no pool names are given, all disks in the system are listed. The MEDIATYPE column indicates whether the disk is HDD or SSD. An NVME device is listed as a block device (BLKDEV) of type SSD.

 CLI@nexenta> disk list
System response:

<table>
<thead>
<tr>
<th>#</th>
<th>NAME</th>
<th>LABEL</th>
<th>SIZE</th>
<th>MEDIATYPE</th>
<th>STATE</th>
<th>WHERE</th>
<th>USAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>c2t0d0</td>
<td>-</td>
<td>465.76G</td>
<td>hdd</td>
<td>ONLINE</td>
<td>Onboard SATA/0</td>
<td>rpool (active)</td>
</tr>
<tr>
<td>1</td>
<td>c2t1d0</td>
<td>-</td>
<td>931.51G</td>
<td>hdd</td>
<td>ONLINE</td>
<td>Onboard SATA/1</td>
<td>tank (active)</td>
</tr>
<tr>
<td>2</td>
<td>c2t2d0</td>
<td>-</td>
<td>3.64T</td>
<td>hdd</td>
<td>ONLINE</td>
<td>Onboard SATA/2</td>
<td>tank (active)</td>
</tr>
<tr>
<td>3</td>
<td>c2t3d0</td>
<td>-</td>
<td>931.51G</td>
<td>hdd</td>
<td>ONLINE</td>
<td>Onboard SATA/3</td>
<td>tank (active)</td>
</tr>
<tr>
<td>4</td>
<td>c2t4d0</td>
<td>-</td>
<td>465.76G</td>
<td>hdd</td>
<td>ONLINE</td>
<td>Onboard SATA/4</td>
<td>tank (active)</td>
</tr>
<tr>
<td>5</td>
<td>c2t5d0</td>
<td>-</td>
<td>931.51G</td>
<td>hdd</td>
<td>ONLINE</td>
<td>Onboard SATA/5</td>
<td>tank (active)</td>
</tr>
</tbody>
</table>

5. View properties for a given disk. These properties can be modified using the disk set subcommand.

CLI@nexenta> disk get all <disk name>

Example:

CLI@nexenta> disk get all c2t0d0

Managing Chassis using IPMI

For enclosures that support chassis management capabilities using IPMI, you may use IPMI protocol to enumerate enclosure facilities, get sensor's readings, and control LEDs. To start managing an IPMI-supported chassis using IPMI protocol, you must configure IPMI credentials and IP address for the enclosure. Once you configure the IPMI credentials for a given enclosure, you may list the enclosure's facilities using the enclosure status and enclosure get commands and start managing them. When you retrieve the enclosure information, NexentaStor collects sensor statistics from the IPMI board on the chassis through the IPMI protocol and displays the statistics using the CLI or the NexentaFusion interface. Sensor statistics are not displayed before you configure IPMI.

Before configuring IPMI, obtain the IP address of the JBOD/enclosure. See the JBOD/enclosure documentation on how to configure them in your network.

In all the commands listed in this section, you can refer to the <enclosure> by any of these parameters: enclosure index, chassisID, model name, user-defined label, product or vendor ID. Enclosure index is sequential number starting from zero, assigned to each enclosure automatically. The index changes if new enclosures are added, or cables are reconnected differently.

CLI@nexenta> enclosure list

<table>
<thead>
<tr>
<th>#</th>
<th>CHASSIS</th>
<th>LABEL</th>
<th>PRODUCT</th>
<th>VENDOR</th>
<th>BAYS</th>
<th>USED</th>
<th>SERIAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>LEGACY_SAS</td>
<td>-</td>
<td>Onboard SAS</td>
<td>Nexenta</td>
<td>18</td>
<td>18</td>
<td>-</td>
</tr>
<tr>
<td>1</td>
<td>LEGACY_SATA</td>
<td>-</td>
<td>Onboard SATA</td>
<td>Nexenta</td>
<td>2</td>
<td>2</td>
<td>-</td>
</tr>
</tbody>
</table>

1. To configure the enclosure for IPMI LAN device.

CLI@nexenta> enclosure configure <enclosure> -i lan -a <host>
Example:

CLI@nexenta> enclosure configure 0 -i lan -a <host>
where 0 is the enclosure index.

System response:
Remote username:
Remote password:
Re-enter remote password:
You can also include the user name and password along with the command as shown below using the -u and -p options. However, it is generally not recommended to provide the user name and password in the command directly.

CLI@nexenta> enclosure configure <enclosure> -i lan -a <host> [-u <username> -p <password>]]

Example:

CLI@nexenta> enclosure configure -i lan -a 10.3.70.44 -u ADMIN -p ADMIN 0

2. Alternatively, to configure the enclosure for IPMI BMC device.

CLI@nexenta> enclosure configure <enclosure> -i bmc

3. To check if the enclosure(s) is configured to use IPMI.

CLI@nexenta> enclosure status <enclosure>

If you do not provide the chassis IDs, status for all enclosures is displayed. The status includes relevant configuration and health info:

- Enclosure model, capacity, etc.
- IPMI configuration details.
- Health overview of enclosure and sensors (like Power Unit).
- Health overview of failed disks (if any failed).

4. To view the IPMI configuration details.

CLI@nexenta> enclosure get all <enclosure>

Or

CLI@nexenta> enclosure get <property> <enclosure>

5. To modify any settings in the IPMI data.

CLI@nexenta> enclosure set <property>=<value> <enclosure>

6. To view the sensors of an enclosure.

CLI@nexenta> enclosure sensor -o sensorId, * <enclosure>

CLI@nexenta> enclosure sensor -o*,interface <enclosure>

7. To unconfigure and delete stored IPMI credentials.

When you unconfigure and delete the IPMI credentials, the enclosure will begin to be controlled by the default SES protocol.

CLI@nexenta> enclosure unconfigure <enclosure>
Once you unconfigure all the credentials associated with the IPMI will be erased and only SES sensors will be displayed for this enclosure.

View Sensor, Bays, or Disks of SES and IPMI

You can optionally list all sensors, bays, or disks by adding "-s", "-b", "-d" flags to the `enclosure sensor` command respectively, or by any combination of these flags.

```
CLI@nexenta> enclosure status [-dbsx] [-O <flags>] [<enclosure>]
```

Verify IPMI Device is Accessible

To view the high-level readings of sensors in human readable units like volts, degrees and so on use the `ipmi sensor` command. Use -A option along with these commands if you would like to view all sensors including the ones that are offline.

- For a BMC device:

  ```
  CLI@nexenta> ipmi sensor -i bmc
  ```

- For a LAN device:

  ```
  CLI@nexenta> ipmi sensor -i lan -a <host>
  ```

 You will be prompted for a user name and password.

 System response:

 Remote username:
 Remote password:
 Re-enter remote password:

 You may include the user name and password along with the command as shown below using the -u and -p options. However, it is generally not recommended to provide the user name and password in the command directly.

  ```
  CLI@nexenta> ipmi sensor -i lan -a <host> [-u <username> -p <password>] 
  ```

To view the low-level information of the IPMI sensors in H/W dependent format, use the `ipmi sdr` command.

- For a BMC device:

  ```
  CLI@nexenta> ipmi sdr -i bmc
  ```

- For a LAN device:

  ```
  CLI@nexenta> ipmi sdr -i lan -a <host> [-u <username> -p <password>] 
  ```

 This lists the records of Sensor Data Repository (SDR) of the system or a remote IPMI device and will also return some non-sensor records.

To configure IPMI lan or bmc, use the `ipmi set` command.

```
CLI@nexenta> ipmi set <properties> lan <channel-num> [-i <interface>] [-a <host>] [-u <username>] [-p <password>] 
```
Example:

- **For a LAN device:**

  ```bash
  CLI@nexenta> ipmi set
  addressSource=static,ipAddress=10.13.15.241,subnet=255.255.255.0,gateway=10.13.15.59 lan 2
  ```

To view the IPMI LAN or BMC information, use the `ipmi get` command:

```bash
CLI@nexenta> ipmi get (all | <properties>) (lan|mc) <channel-num>
  [-i <interface>] [-a <host>] [-u <username>] [-p <password>] [-s <field>]... [-S <field>]... [-O <flags>]
```

Example:

```bash
CLI@nexenta> ipmi get all lan2
```
Managing Network

During NexentaStor installation, you may have set up a network interface card (NIC) for the NexentaStor system. The tasks in this section demonstrate how to verify that the network interface is in place and configured, add a second network interface, use aggregation and VLANs to maximize network throughput and performance.

Verifying the Available Network Interface

During NexentaStor installation, you set up the network interface card (NIC) for the NexentaStor appliance. This section demonstrates how to verify the network interface is in place and properly configured. You can view existing network (hardware and software) interfaces (NICs), such as aggregations with the link status.

1. Query the list of network interface cards (NIC) and verify each card’s status. Also, note the NIC name that you will need for the next step.

 CLI@nexenta> link list
 NAME CLASS STATE OVER MTU SPEED
 e1000g0 phys up e1000g0 1500 1000
 e1000g1 phys unknown e1000g1 1500 0

2. View the details of the NIC.

 CLI@nexenta> link get all e1000g0

Assigning Addresses to Network Interfaces and Servers

1. Add a physical network interface card if needed. To add an interface, verify that the new NIC is available on the system.

 CLI@nexenta> inventory nic
 NAME MEDIATYPE STATE SPEED MAC DUPLEX
 e1000g0 Ethernet up 1000 0:25:90:61:b0:14 full
 e1000g1 Ethernet unknown 0 0:25:90:61:b0:15 half

2. Configure the newly added interface. The following example assigns a static IP address to the e1000g1 NIC.

 CLI@nexenta> ip create static <name> <address>

 Example:
 CLI@nexenta> ip create static e1000g1/v4 10.3.10.38/24

3. Or assign a dynamic IP address to the interface e1000g1 using the following command:

 CLI@nexenta> ip create dhcp e1000g1/v4

4. View the NIC configuration to verify the newly added interface.

 CLI@nexenta> ip list
5. If you have already assigned an IP address and need to update the IP address, destroy the IP address and then assign a new IP as in the previous command.

 CLI@nexenta> ip destroy e1000g0/v4

6. Optionally, set a new DNS name server.

 CLI@nexenta> net create dns <address>

 Example:

 CLI@nexenta> net create dns 10.3.40.245

7. Verify if the dns is created successfully.

 CLI@nexenta> net list dns 10.3.40.245

 NAME PROTOCOL
 =============== ===========
 10.3.40.245 ipv4

8. Verify the IP configuration, then verify that the NIC state is OK.

 CLI@nexenta> ip list

 NAME TYPE STATE ADDRESS
 =========== ========= ====== =========
 e1000g0/v4 static ok 10.3.10.38/24
 e1000g1/v6 addrconf ok fe80::20c:29ff:fecd:82a6/10

Creating a Network Route

During the NexentaStor installation, you must have set up the network route. You can also create a static route manually using the CLI. When creating a route, a network or host should be specified as the destination, and a reachable network address should be specified as the gateway.

1. To create the default route, specify 'default' for the destination.

 CLI@nexenta> route create <destination> <gateway>

 Example:

 CLI@nexenta> route create default 10.3.10.1

2. Verify the route you created.

 CLI@nexenta> route list default

 DESTINATION GATEWAY PROTOCOL INTERFACE REFS USE STATIC
 ============= ========= ========== ========= ========= =========
 default 10.3.53.1 ipv4 e1000g0 8 228397 yes

Depending on your network workload, you may benefit from aggregating network connections or by using virtual LANs (VLANs). If you need to aggregate network connections, ensure that you have two or more NICs available on the system.
Aggregating NICs

Aggregating network links in NexentaStor is often used to increase bandwidth within a physical network setup. Rather than being limited to the bandwidth of the largest NIC, you can increase the throughput to that of the combined NICs.

1. To aggregate links in NexentaStor, provide the type of link (aggr), the NIC names separated by a comma, and the aggregate link name (aggr1).

 CLI@nexenta> link create aggr [-P <policy>] [-L <mode>] [-T <timer>] [-u <mac>] <name> <link>...

 Example:
 CLI@nexenta> link create aggr aggr1 e1000g1,e1000g2

2. Verify the created aggregation.

 CLI@nexenta> link list aggr aggr1

 NAME CLASS STATE OVER MTU SPEED
 aggr1 aggr up e1000g1,e1000g2 1500 0

Using VLANs

VLANs (Virtual LANs) allow you to group network hosts together according to resource needs, rather than being limited to grouping hosts that are on the same network switch. Using VLANs with NexentaStor enables you to have more flexibility in managing and responding to network traffic needs.

1. To set up a VLAN for use with NexentaStor, provide the type of link (vlan), one VLAN link (other links will be ignored), the VLAN ID, and the VLAN name.

 CLI@nexenta> link assign vlan <name> <vid> <link>

 Example:
 CLI@nexenta> link assign vlan vlan1 12 e1000g1

2. Verify the VLAN you created.

 CLI@nexenta> link list vlan vlan1

 NAME OVER VID
 vlan1 e1000g2 12

If you are planning to set up a cluster environment for the high availability of the storage pool, configure HA cluster as shown in the section below Configuring HA Cluster. HA cluster runs a defined set of services and monitors each cluster node member for failures and can trigger an automatic failover to the other node in the cluster. The NexentaStor appliances in a cluster are connected through various communication channels and exchange heartbeats that provide information about their states.
Configuring HA Cluster

The term High Availability (HA) Cluster refers to the set of hardware that encompasses a pair of NexentaStor appliances with the shared storage. These clustered nodes are configured with a common VIP and are configured to exchange heartbeats through some communication channels that provide information about their states.

This section uses the following name conventions as examples:

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>ha cluster name</td>
<td>democluster</td>
</tr>
<tr>
<td>1st node name in a cluster</td>
<td>smc-53-109</td>
</tr>
<tr>
<td>2nd node name in a cluster</td>
<td>smc-53-110</td>
</tr>
</tbody>
</table>

The cluster creation process involves the following tasks:

1. Verify that the HA feature is licensed and enabled on both NexentaStor appliances in the cluster.

 CLI@nexenta> license show

 If the HA feature is not activated, contact sales@nexenta.com to obtain your HA license token then run:

 CLI@nexenta> license activate <Activation Token>

 PROPERTY **VALUE**
 guid 44454c4c-5200-1051-8058-b3c04f563532
 valid yes
 status ok
 type ENTERPRISE
 product NexentaStor
 version 5.2.1
 licensee h.s@acme.com
 serial SR-DEV-NS-201614507
 features fibrechannel, scheduledReplication, highAvailability

2. To find out if the HA system feature is running on each cluster node:

 CLI@nexenta> svc list ha

 NAME **DESCRIPTION** **STATE**
 ha HA cluster service online
If HA service is not online, enable it:

```bash
CLI@nexenta> svc enable ha
```

3. Update the hosts to ensure that they resolve to each other. Use the static management IP address.

 On the first node in a cluster environment, run the following command:

   ```bash
   CLI@nexenta> net create host <Static Management IP address of the second node> <host name of the second node>
   
   Example:
   CLI@nexenta> net create host 10.3.53.110 smc-53-110
   
   See Changing Management Address
   ```

4. Do the equivalent on the second node.

5. Verify if they resolve to each other by running the following command on both the nodes.

   ```bash
   CLI@nexenta> net list host
   
   Example:
   ADDRESS      HOSTNAME    ALIAS    PROTOCOL
   ::1          localhost   -        ipv6
   127.0.0.1    localhost   loghost  ipv4
   10.3.53.109  smc-53-109  -        ipv4
   10.3.53.110  smc-53-110  -        ipv4
   ```

6. Verify that the system day and time settings on each of the cluster member nodes are in sync.

7. Create a cluster with only public network heartbeats. The following command creates a cluster named democluster on the two nodes smc-53-109 and smc-53-110.

   ```bash
   CLI@nexenta> hacluster create [-fnv] [-d <description>] <nodes> <cluster name>
   
   Example:
   CLI@nexenta> hacluster create -d "test cluster" smc-53-109,smc-53-110 democluster
   
   For more advanced configurations like creating a cluster with private network heartbeats or using both public and private, see NexentaStor HA CLI Configuration Guide.

8. Verify the cluster status.

   ```bash
 CLI@nexenta> hacluster status -e
   ```

   **== Cluster status ==**

<table>
<thead>
<tr>
<th>NAME</th>
<th>STATUS</th>
<th>NODES</th>
<th>SERVICES</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>democluster</td>
<td>ok</td>
<td>2/2</td>
<td>0/0</td>
<td>test cluster</td>
</tr>
</tbody>
</table>

   **== Nodes ==**

<table>
<thead>
<tr>
<th>NODE</th>
<th>STATUS</th>
<th>SERVICES</th>
<th>ADDRESS</th>
<th>HostId</th>
<th>Release</th>
</tr>
</thead>
<tbody>
<tr>
<td>smc-53-109</td>
<td>up</td>
<td>0/0</td>
<td>10.3.53.109</td>
<td>4ef54012</td>
<td>3.12.0</td>
</tr>
</tbody>
</table>
9. Once you create a HA cluster, you also have an option to add a disk or network heartbeat using the `add-disk-heartbeat` or `add-net-heartbeat` command. To add a network heartbeat, Nexenta recommends using a private dedicated network connection available between the nodes.

- **To add net heartbeat:**
  
  CLI@nexenta> hacluster add-net-heartbeat smc-53-109-hb2 192.168.71.3
  
  smc-53-110-hb2 192.168.71.4

- **To add disk heartbeat:**
  
  CLI@nexenta> hacluster add-disk-heartbeat smc-53-109 smc-53-110 hb
c2t0d0

Use the following commands for more details on the CLI cluster commands.

- To list all the HA cluster CLI commands:
  
  CLI@nexenta> man hacluster

- To list the available options for the subcommand:
  
  CLI@nexenta> hacluster <subcommand name> -h

See the *NexentaStor HA CLI Configuration Guide* in [https://nexenta.com/products/documentation](https://nexenta.com/products/documentation) for more details on how to create, manage, and monitor HA clusters.
Configuring a Pool

Pools are the containers for all datasets such as file systems, volume groups, and volumes. The following sections demonstrate how to create a pool, then add redundancy, cache devices, and disk logs.

This section uses the following name conventions as examples:

- pool (manual) - poola
- pool (auto) - poola-auto
- ha service name - poola
- 1st node name in a cluster - smc-53-109
- 2nd node name in a cluster - smc-53-110

Creating a Pool

Before you create a pool, identify the disks to be included in the pool.

Create the storage pool manually (using the pool create subcommand), or automatically create new pools based on specified options and arguments (using the pool create-auto subcommand). The create-auto subcommand streamlines the process of setting up a NexentaStor appliance, and is the recommended method for creating pools. Assess your site’s configuration prior to using this subcommand to ensure the creation of pools that optimize the design.

When creating pools, required options include data redundancy type (for example, RAIDZ1, RAIDZ2, or mirror), the data devices to be included in the pool, and the pool name.

Note: You cannot change the redundancy type after a pool is setup. However, you can add spares and mirrors as shown in the next section.
The following steps can be used for creating a pool on a device shared between the clustered nodes or on a stand alone device that is part of only one node.

1. Before creating a pool, verify if any pool exists on the node.
   
   CLI@nexenta> pool list
   
   NAME  SIZE    ALLOC  FREE   AVAIL  DEDUP  EXPANDSZ  FRAG  HEALTH
   rpool  12.47G  6.98G  5.50G  44%    1.00x  -         15%   ONLINE

2. To create a pool manually on a shared device:
   
   CLI@nexenta> pool create [-fnv] [-R altroot] [-o <properties>] <pool> <vdev>...
   
   Example:
   
   CLI@nexenta> pool create poola c2t1d1

3. Optionally, to enable automatic pool expansion when the associated device is grown.
   
   CLI@nexenta> pool set autoexpand=yes <pool name>
   
   Example:
   
   CLI@nexenta> pool set autoexpand=yes poola

   Nexenta recommends planning for pool sizes to accommodate future expansion before creating a pool, rather than reactively replacing multiple disks to increase pool capacity as the needs arise.

4. Verify if the autoexpand property is set to “yes”.
   
   CLI@nexenta> pool get autoexpand poola
   
   NAME  PROPERTY    VALUE
   poola  autoexpand  yes

5. Or, the pool create-auto command will automatically create pool data vdevs based on user provided criteria. For example, you can ask for the automated creation of a mirrored pool pool_m of 120 disks, with 2 way mirrors, across 3 enclosures, with 2TB disks. The system will take care of laying out all the vdevs in the right way and automate the entire setup.
   
   
   Example:
   
   CLI@nexenta> pool create-auto mirror poola-auto –c 2 –e e1,e2,e3 –M 120 –t hdd –s 2TB

   Note: When creating a pool, you can force to utilize the disks even if they are currently in use by using the –f flag.

6. Verify the pool you created.
   
   CLI@nexenta> pool list <pool name>
Example:

CLI@nexenta> pool list poola
NAME  SIZE   ALLOC   FREE   AVAIL  DEDUP  EXPANDSZ  FRAG  HEALTH
poola  1.92G  100.1M  1.82G  95%    1.00x  -         0%    ONLINE

7. To display the list of pool attributes that can be modified:

CLI@nexenta> pool set --help

If you created a shared pool on one of the nodes in a clustered environment and want to provide high
availability to the user’s data in case of a node failure, create a HA service as shown in the section Configuring
HA Service for the Shared Pool.

Adding Spares, Cache Devices, and Log Disks

You can add spares, cache devices, and log disks using the pool add command.

Adding Spares

To add spares, use the following commands:

1. Identify the disks that are available. Note the logical device names on the left column.
   CLI@nexenta> disk list

2. Add a spare to a pool.
   CLI@nexenta> pool add <pool name> spare <disk-list>...

Adding Cache Devices

To add cache devices, use the following commands:

1. Identify the disks that you have available. Note the logical device names located in the left
   column.
   CLI@nexenta> disk list

2. Add a cache device named c2t5d0 to the pool named poola.
   CLI@nexenta> pool add <pool name> cache <disk-list>

   Example:
   CLI@nexenta> pool add poola cache c2t5d0

Adding Log Disks

To add log disks, use the following commands:

1. Identify the disks that you have available. Note the logical device names located in the left
   column.
   CLI@nexenta> disk list
2. Add a log device with device name c2t6d0 to the pool named poola.

   CLI@nexenta> pool add <pool name> log <disk name>

   Example:
   CLI@nexenta> pool add poola log c2t6d0

**Smart-Sparing and Auto-Replace**

Smart-sparing and auto-replace are two new NexentaStor features that improve storage availability and simplify maintenance operations.

When a device in a pool fails, smart-sparing automatically selects the right spare device to activate by means of an ordered search using media type, size, and locality as criteria. Media types currently supported are HDD and SSD. The size attribute is used to ensure that the spare is at least the same size or bigger than the failed drive. Locality of the device refers to the storage enclosure. For example, for a pool configured with an SSD hot spare (for SLOG devices) and HDD hot spares (for data devices) in each storage enclosure:

- Smart-sparing will ensure that the SSD spare is only activated in case of a SLOG SSD failure,
- In case of an HDD failure, smart-sparing will preferentially activate the HDD spare in the storage enclosure where the failure occurred.

With auto-replace, replacing a failed device no longer requires issuing system commands to control the operation. The user can simply remove the failed device and physically replace it with a new device. NexentaStor automatically detects the insertion of the new device and triggers re-silvering. If the failed device had been previously spared, the spare is then released back to the pool. Note that if a spare was activated following a device failure, the user should wait for the spare resilver to complete before physically swapping out the failed device.

**Maintaining Pools (Scrub and Trim/Unmap)**

NexentaStor supports pool scrubbing and trimming.

**Scrub**

The scrub process traverses the data of the entire pool and checks to make sure that there are no data integrity issues.

To trigger the start and stop of the Scrub feature for a pool:

   CLI@nexenta> pool start-scrub
   CLI@nexenta> pool stop-scrub

Use a cron expression to set the Scrub schedule. In the example below, a Scrub operation is triggered at 11:15 (PM) every Sunday.

   CLI@nexenta> pool set scrubSchedule="15 23 * * 7" poola
The following graphic illustrates the cron expression structure.

```
 ┌───────────── min (0 - 59)
 │ ┌────────────── hour (0 - 23)
 │ │ ┌─────────────── day of month (1 - 31)
 │ │ │ ┌──────────────── month (1 - 12)
 │ │ │ │ ┌───────────────── day of week (0-7)
 │ │ │ │ │
 │ │ │ │ │
 │ │ │ │
 │ │ │
 │ │
 │
 15 23 * * 7
```

CLI@nexenta> pool get scrubSchedule poola  - displays back the Scrub schedule you configured.

**Trim**

When enabled for pools on SSDs, the Trim/ Unmap feature in NexentaStor notifies the underlying storage media about certain sectors that are no longer needed in a volume or a file system, and thus can be de-allocated made available for other LUNs to use.

You can trigger the start and stop of the Trim feature for a pool using the following commands.

CLI@nexenta> pool start-trim
CLI@nexenta> pool stop-trim

The following example demonstrate how to create, stop, and verify a Trim schedule using a cron expression.

CLI@nexenta> pool set trimSchedule="0 1 * 2 *" poola
CLI@nexenta> pool set trimStopSchedule="0 1 * 2 *" poola
CLI@nexenta> pool get trimSchedule poola

**Note:** Not all SSDs support the Trim option. Verify that your SSD supports this feature.
Configuring HA Service for the Shared Pool

The term HA service refers to the service that runs on the clustered nodes to provide high availability access to the user’s data. When the HA service detects a node failure, it transfers ownership of the shared storage to the other node in the cluster pair.

To create a cluster service for the shared pool, you must have created the pool on one of the HA nodes using shared devices that are visible from both the nodes.

Note:

<table>
<thead>
<tr>
<th>HA services can be created only from imported pools. Pools must be explicitly imported on the node that initiated the service creation request.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nexenta recommends that you always verify that the shared pool is in a healthy state before creating an HA service. The HA cluster command does not detect disk and pool failures.</td>
</tr>
<tr>
<td>CLI@nexenta&gt; pool status &lt;pool name&gt;</td>
</tr>
<tr>
<td>The HA service name must match the pool name, a required argument to the command.</td>
</tr>
</tbody>
</table>

You can create an HA service with or without virtual IP addresses (VIPs). Nexenta recommends to create VIP(s) for nfs, smb shares and iSCSI LUNs to successfully failover in case of a disaster.

Note:

| In order to start a cluster service you must have a local static IP on the interface first. The interface will be marked as blocked by RSF cluster if there is no pre-existing static IP address on it. And also to assign a VIP onto an interface you must already have an IP. |

1. Discover unclustered pools that are available to become members of a cluster.
   
   CLI@nexenta> hacluster find-pools

   NAME       GUID
   poola      1797983880284287424
   poola-auto 5795983885284640389

2. We can now add a HA service named “poola” to control the currently imported pool (also named poola) on node smc-53-109. When creating a service, you can specify the node where you intend the service to start. You can also specify the list of nodes on which the HA service is allowed to run. If you do not provide the node name, the service is initiated from a random node among available cluster nodes.

   The example below also creates a VIP (10.3.53.111/255.255.255.0 with the subnet mask) using the interface e1000g0 from the node smc-53-109 and e1000g0 from the node smc-53-110.

   CLI@nexenta> haservice create [-evnf] [-d <description>] [-m <node>] [-r <timeout>] [-i <delay>] [-g <guid>] [-N <nodes>] [-V <vips>] <pool>

   Example:

   CLI@smc-53-109> haservice create -V vip01@10.3.53.111/255.255.255.0=smc-53-109:e1000g0,smc-53-110:e1000g0 -m smc-53-109 poola

3. Optionally, add pools to an HA Service.

   When you add a second pool to the HA service, both the pools are now associated with the same poola service and will fail over together as members of the cluster.
CLI@nexenta> haservice add-pool <service> <pool> <guid>
Example:
CLI@nexenta> haservice add-pool poola poola1 <guid>

4. Now initiate the HA service.
After you created an HA service, you can set the specific service to start either in auto (-a) or manual (-m) mode after the service stops. The command below specifies that the `poola` service will be started automatically.

CLI@nexenta> haservice set-mode [-amnv] <service> <node>
Example:
CLI@smc-53-109> haservice set-mode -a poola smc-53-109

If you selected the manual mode, start the service manually with the following CLI command.

CLI@nexenta> haservice start <service> <node>
Example:
CLI@smc-53-109> haservice start poola smc-53-109

5. Verify the service you created.

CLI@smc-53-109> haservice status

Command output:

==service==
poola
==status==
NODE STATUS MODE UNBLOCKED
smc-53-109 running automatic yes
smc-53-110 stopped automatic yes
==pools==
NAME GUID PRIMARY
poola 13660110209781822772 yes
==VIP==
NAME ADDRESS IPv6 NODE NIC
vip01 10.3.53.111/255.255.255.0 no smc-53-109 e1000g0
smc-53-110 e1000g0
init timeout: 20
run timeout: 8
disk heartbeats: not available
==SCSI reservations==
NODE DISK TYPE
universe c2t2d0 SCSI2
6. In the event of either node failing (smc-53-109 failing in this example) the surviving node, smc-53-110, takes over the HA service for the pool if it is built using the shared storage devices that are accessible from both the nodes.

You can also trigger a fail over of the HA service(s) running on a node to the other node in the cluster during the maintenance period or if you need to upgrade a node that runs the cluster service. To fail over the HA service use the following command:

```bash
CLI@nexenta> haservice failover <from-node> <to-node>
```

This command fails over all the services running on the node and imports all the pools to the other node.

7. Verify that the pool from smc-53-109 imported to smc-53-110.

```bash
CLI@smc-53-110> pool list
```

<table>
<thead>
<tr>
<th>NAME</th>
<th>SIZE</th>
<th>ALLOC</th>
<th>FREE</th>
<th>AVAIL</th>
<th>DEDUP</th>
<th>EXPANDSZ</th>
<th>FRAG</th>
<th>HEALTH</th>
</tr>
</thead>
<tbody>
<tr>
<td>poola</td>
<td>9.63G</td>
<td>100.2M</td>
<td>9.53G</td>
<td>99%</td>
<td>1.00x</td>
<td>-</td>
<td>0%</td>
<td>ONLINE</td>
</tr>
<tr>
<td>rpool</td>
<td>12.47G</td>
<td>7.41G</td>
<td>5.06G</td>
<td>41%</td>
<td>1.00x</td>
<td>-</td>
<td>26%</td>
<td>ONLINE</td>
</tr>
</tbody>
</table>

8. When the failed node is repaired and restarted, it rejoins the cluster. Verify that the recovered node rejoined the cluster.

```bash
CLI@smc-53-110> hacluster status
```

<table>
<thead>
<tr>
<th>NODE</th>
<th>STATUS</th>
<th>SERVICES</th>
<th>ADDRESS</th>
<th>HostId</th>
<th>Release</th>
</tr>
</thead>
<tbody>
<tr>
<td>smc-53-109</td>
<td>up</td>
<td>0/1</td>
<td>10.3.53.109</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>smc-53-110</td>
<td>up</td>
<td>1/1</td>
<td>10.3.53.110</td>
<td>808b556b</td>
<td>3.12.0</td>
</tr>
</tbody>
</table>

9. Now you as an administrator can control where the pool is redistributed. Now to fail back the pool and the HA service to the repaired node smc-53-109 so that the cluster is back in its original configuration, run the following command on the smc-53-110 node.

```bash
CLI@nexenta> haservice move <service> <node>
```

Example:

```bash
CLI@smc-53-110> haservice move poola smc-53-109
```

10. Now verify from both the nodes that the HA service is up and running from their original configuration. Run the following commands from both the nodes.

```bash
CLI@smc-53-109> haservice status
CLI@smc-53-110> haservice status
CLI@smc-53-109> haservice list
```

<table>
<thead>
<tr>
<th>NAME</th>
<th>VIPs</th>
<th>NODES</th>
<th>RUNNING</th>
<th>STOP</th>
</tr>
</thead>
</table>

For more details on how to manage the HA service:

- **To list all the HA service CLI subcommands:**
  ```bash
 CLI@nexenta> haservice
  ```

- **To list the available options for the subcommand:**
  ```bash
 CLI@nexenta> haservice <subcommand name> -h
  ```
Creating and Sharing a File System

Using NexentaStor, you can create and share file systems within the pools. To begin, you first create a pool that is always the root directory in the ZFS file system hierarchy. You can set file system properties such as compression mode and reservation size.

This section uses the following name conventions as examples:

- pool
- filesystem for nfs VMware share
- filesystem for smb share
- filesystem for open share

### Creating a File System

This section demonstrates the steps involved when creating a file system.

1. Create the file system that you will share.
   
   CLI@nexenta> filesystem create <filesystem>
   
   Example:
   
   CLI@nexenta> filesystem create poola/testsmb

2. See what other file system attributes you can set such as compressionMode (default value is lz4).
   
   CLI@nexenta> filesystem set --help
   
   With smart compression, compression efficiency is monitored and automatically stops compressing blocks if there are no significant space savings.

3. Verify that the file systems have been created.
   
   CLI@nexenta> filesystem list poola/testsmb
   
   PATH            USED      AVAIL  REFER    NFS  SMB  MOUNTPOINT
   
   poola/testsmb   1.55T     5.03T  593.19G  no   no    /poola/testsmb

4. View all the properties of the file system you created.
   
   CLI@nexenta> filesystem get all poola/testsmb

5. To see currently mounted file systems and their mount points:
   
   CLI@nexenta> filesystem mount
   
   PATH               MOUNTPOINT
   
   poola/testsmb      /poola/testsmb
Sharing a File System via SMB

SMB service is disabled by default. However, when you create an SMB share, the service gets enabled automatically. NexentaStor now supports SMB v3.02 (default version) along with SMB v2.1 and 3.0. The significant new features associated with 3.02 are SMB2,3 leases "enhanced op-locks", SMB3 persistent handles, and "continuous availability" (CA) shares. Leases improve the effectiveness of client-side data caching.

The default version NexentaStor supports is SMB v3.02 on a new 5.2.1 install. However on upgrade, from the earlier version of NexentaStor 5, whatever was configured for the SMB max protocol will reapply.

If you need to enable SMB v3.02 protocol, see Step 5.

- To view the list of supported SMB server protocols in NexentaStor:
  
  CLI@nexenta> svc get supportedProtocols smb
  
  Name                  Value
  supportedProtocols    ['1', '2.1', '3.0', '3.02']

- To view the min and max protocol version:
  
  CLI@nexenta> svc get minProtocolVersion smb
  CLI@nexenta> svc get maxProtocolVersion smb

See List of SMB Features Supported in Each SMB Version to view the list of smb features supported in each version of smb protocol.

Setting min and max Protocol Version for SMB Client

NexentaStor supports using SMB 2.1 client protocol to connect to Active Directory infrastructure. This is specifically targeted at enabling NexentaStor 5.x to connect to Active Directory servers on which SMB 1 has been disabled.

This new capability is enabled by default on NexentaStor 5.x, either as a result of a fresh install or an upgrade from a previous version. If required, you can control the min / max SMB client protocol version and effectively force a NexentaStor 5.x to stick to SMB 1 for Active Directory connections.

The SMB client protocol version negotiation can be constrained using the min_protocol or max_protocol settings using the config/svc command from CLI.

1. Validate the current min and max smb client protocol version.

   CLI@nexenta> svc get all smbclient
   
   Name                  Value
   maxProtocolVersion    2.1
   minProtocolVersion    1

2. Set the min, max client protocol version if not set.

   CLI@nexenta> config set smbclient.minProtocolVersion=1
   CLI@nexenta> config set smbclient.maxProtocolVersion=2.1
Create an SMB Share in Workgroup Mode with Guest Access

By default, a guest account is configured as part of the NexentaStor 5 installation, but SMB access is disabled. To share a file system via SMB in workgroup mode with Guest access enabled:

1. **Confirm that guest account exists:**
   
   CLI@nexenta> user list
   
<table>
<thead>
<tr>
<th>LOGIN</th>
<th>UID</th>
<th>PRIMARYGROUP</th>
<th>COMMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>nobody</td>
<td>60001</td>
<td>nobody</td>
<td>NFS Anonymous Access User</td>
</tr>
<tr>
<td>noaccess</td>
<td>60002</td>
<td>noaccess</td>
<td>No Access User</td>
</tr>
<tr>
<td>nobody4</td>
<td>65534</td>
<td>nogroup</td>
<td>SunOS 4.x NFS Anonymous Access User</td>
</tr>
<tr>
<td>admin</td>
<td>100</td>
<td>other</td>
<td>-</td>
</tr>
<tr>
<td>guest</td>
<td>101</td>
<td>other</td>
<td>-</td>
</tr>
</tbody>
</table>

2. **Enable Guest access for the SMB service:**
   
   CLI@nexenta> svc set enableGuest=true smb
   
   CLI@nexenta> svc get all smb
   
<table>
<thead>
<tr>
<th>Name</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>systemComment</td>
<td>-</td>
</tr>
<tr>
<td>restrictAnonymous</td>
<td>True</td>
</tr>
<tr>
<td>preferredDomainController</td>
<td>-</td>
</tr>
<tr>
<td>signing</td>
<td>enabled</td>
</tr>
<tr>
<td>enableNetbios</td>
<td>False</td>
</tr>
<tr>
<td>lanManagerAuthLevel</td>
<td>4</td>
</tr>
<tr>
<td>traverseMounts</td>
<td>True</td>
</tr>
<tr>
<td>keepAlive</td>
<td>5400</td>
</tr>
<tr>
<td>activeDirectorySite</td>
<td>-</td>
</tr>
<tr>
<td>maxProtocolVersion</td>
<td>2.1</td>
</tr>
<tr>
<td>enableIpv6</td>
<td>True</td>
</tr>
<tr>
<td>maxWorkers</td>
<td>1024</td>
</tr>
<tr>
<td>enableDdns</td>
<td>False</td>
</tr>
<tr>
<td>enableGuest</td>
<td>True</td>
</tr>
</tbody>
</table>

3. **Create file system poola/testsmb:**
   
   CLI@nexenta> fs create poola/testsmb
   
   CLI@nexenta> fs list
   
<table>
<thead>
<tr>
<th>PATH</th>
<th>USED</th>
<th>AVAIL</th>
<th>REFER</th>
<th>NFS</th>
<th>SMB</th>
<th>MOUNTPOINT</th>
</tr>
</thead>
<tbody>
<tr>
<td>poola</td>
<td>102.1M</td>
<td>153.94G</td>
<td>26.6K</td>
<td>no</td>
<td>no</td>
<td>/poola</td>
</tr>
</tbody>
</table>
4. Share the file system via SMB and enable Guest access on that share. The following example shows how to set a custom share name “nexenta_share” for the share you create.

*See the Microsoft documentation for the naming restrictions on SMB Shares.*

```
CLI@nexenta> smb share -o name=nexenta_share poola/testsmb
CLI@nexenta> smb set guestok=yes poola/testsmb
CLI@nexenta> smb get all poola/testsmb

PATH PROPERTY VALUE
poola/testsmb access no
poola/testsmb cache manual
poola/testsmb guestOk yes
poola/testsmb description -
poola/testsmb name poola_testsmb
poola/testsmb quota yes
poola/testsmb shareState online
```

5. To enable 3.02 and CA, run the following steps.

Set the protocol version:

```
CLI@nexenta> svc set maxProtocolVersion=3.02 smb
or
CLI@nexenta> config set smb.maxProtocolVersion=3.02
and

Enable continuous availability (CA) for the smbshare.

CLI@nexenta> smb set ca=true poola/testsmb
```

6. Note the name of the SMB share that must be used to access it from SMB clients. If you did not provide a custom name for the share, you can always modify the default share name using the following command.

```
CLI@nexenta> smb set shareName=nexenta_share poola/testsmb
```

7. Finally, configure the ACL on the file system and add an Access Control Entry (ACE) for the Guest account. By default, a new file system is created with 2 ACEs on it:

```
CLI@nexenta> acl list poola/testsmb
```
System response:

<table>
<thead>
<tr>
<th>INDEX</th>
<th>TYPE</th>
<th>PRINCIPAL</th>
<th>PERMISSIONS</th>
<th>FLAGS</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>allow</td>
<td>owner@</td>
<td>rwxpdDaARWcCos</td>
<td>fd-----</td>
</tr>
<tr>
<td>1</td>
<td>allow</td>
<td>groupsid:Administrators@BUILTIN</td>
<td>rwxpdDaARWcCos</td>
<td>fd-----</td>
</tr>
</tbody>
</table>

8. The second ACE allows Administrator accounts from a Windows host to configure user access to that share. To fully enable Guest access to that share, you can also simply add the following ACE:

```bash
CLI@nexenta> acl set A+groupsid:Guests@BUILTIN:rwxpdDaARWcs:fd:allow poola/testsmb
```

or

```bash
CLI@nexenta> acl set A+groupsid:Guests@BUILTIN:modify_set:fd:allow poola/testsmb
```

```bash
CLI@nexenta> acl list poola/testsmb
```

System response:

<table>
<thead>
<tr>
<th>INDEX</th>
<th>TYPE</th>
<th>PRINCIPAL</th>
<th>PERMISSIONS</th>
<th>FLAGS</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>allow</td>
<td>owner@</td>
<td>rwxpdDaARWcCos</td>
<td>fd-----</td>
</tr>
<tr>
<td>1</td>
<td>allow</td>
<td>groupsid:Administrators@BUILTIN</td>
<td>rwxpdDaARWcCos</td>
<td>fd-----</td>
</tr>
<tr>
<td>2</td>
<td>allow</td>
<td>groupsid:Guests@BUILTIN</td>
<td>rwxpdDaARWc</td>
<td>fd-----</td>
</tr>
</tbody>
</table>

The share is now enabled and accessible by Guest accounts at poola_testsmb.

Create an SMB Share in Domain Mode

Using Active Directory

To use the DNS-based Active Directory (AD) services, follow these steps:

Note:
- In many AD environments your AD servers are also DNS servers.
- In a clustered environment, you must join the AD domain on both nodes manually.

1. Identify the available AD name server, noting its IP address:

   ```bash
 CLI@nexenta> net list dns
   ```

2. If no AD name server exists, add two or more AD name servers.

   Use this command to add the Active Directory name server if it is not available.

   ```bash
 CLI@nexenta> net create dns 10.3.40.245
   ```

3. Verify the domain.

   ```bash
 NAMESERVER PROTOCOL
 10.3.40.245 ipv4
 8.8.8.8 ipv4
   ```

4. Join the AD domain by specifying your AD administrator username and password, and the AD server name.
CLI@nexenta> smb join domain domainadministrator company.corp

5. Provide the password when the system prompts for it.

6. Verify the join.

   CLI@nexenta> smb status

   REALMNAME     MODE    DOMAINCONTROLLER
   company.corp  domain company.corp

7. Configure and verify NTP before joining the domain.

8. Verify that the NTP service is running then synchronize the NexentaStor server time with the domain controller time.

   CLI@nexenta> svc list ntp

   NAME  DESCRIPTION  STATE
   ntp   NTP client   online

   CLI@nexenta> svc set servers=yourntpserver.example.com ntp

9. Verify that your NexentaStor system has joined the AD domain.

   CLI@nexenta> smb status

Share Filesystem

1. Create file system poola/testsmb:

   CLI@nexenta> fs create poola/testsmb

   CLI@nexenta> fs list

   PATH            USED    AVAIL   REFER  NFS  SMB  MOUNTPOINT
   poola          102.1M  153.94G  26.6K  no   no   /poola
   poola/fs1      1.7M    153.94G  1.7M   yes  no   /poola/fs1
   poola/fs2      25.3K   153.94G  25.3K  no   no   /poola/fs2
   poola/testsmb  25.3K   153.94G  25.3K  no   no   /poola/testsmb

2. Share the file system via SMB. The following example shows how to set a custom share name “nexenta_share” for the share you create.

   CLI@nexenta> smb share -o name=nexenta_share poola/testsmb

Sharing a File System via NFS

NexentaStor supports NFS versions 3 (default) and 4.
Create an Open NFS Share for a VMware NFS Datastore

To configure an NFS share to be used as a VMware NFS Datastore, we create an NFSv3 share that is open with root access to any ESXi host on the network.

1. Create file system poola/testnfs-vmware

```
CLI@nexenta> filesystem create poola/testnfs-vmware
```

```
CLI@nexenta> fs list
```

<table>
<thead>
<tr>
<th>PATH</th>
<th>USED</th>
<th>AVAIL</th>
<th>REFER</th>
<th>NFS</th>
<th>SMB</th>
<th>MOUNTPOINT</th>
</tr>
</thead>
<tbody>
<tr>
<td>poola</td>
<td>102.0M</td>
<td>153.94G</td>
<td>25.3K</td>
<td>no</td>
<td>no</td>
<td>/poola</td>
</tr>
<tr>
<td>poola/fs1</td>
<td>1.7M</td>
<td>153.94G</td>
<td>1.7M</td>
<td>yes</td>
<td>no</td>
<td>/poola/fs1</td>
</tr>
<tr>
<td>poola/fs2</td>
<td>25.3K</td>
<td>153.94G</td>
<td>25.3K</td>
<td>no</td>
<td>no</td>
<td>/poola/fs2</td>
</tr>
<tr>
<td>poola/testnfs-vmware</td>
<td>25.3K</td>
<td>153.94G</td>
<td>25.3K</td>
<td>no</td>
<td>no</td>
<td>/poola/testnfs-vmware</td>
</tr>
</tbody>
</table>

2. To ensure that VMware hosts will negotiate an NFSv3 share and avoid any interoperability problems with NFSv4 negotiations, we set the NFS service protocol maxVersion to 3:

```
CLI@nexenta> svc set maxversion=3 nfs
```

```
CLI@nexenta> svc get all nfs
```

Name            Value
---             -------
delegation      True
servers         256
maxVersion      3
gracePeriod     90
nfsMapIdDomain  -
minVersion      2
lockdServers    256

3. Enable NFS sharing on the file system with root access for any hosts that are trusted on the network:

```
CLI@nexenta> nfs share -o anon=root,securityContexts=sec=sys,rw=* poola/testnfs-vmware
```

```
CLI@nexenta> nfs get all poola/testnfs-vmware
```

<table>
<thead>
<tr>
<th>PATH</th>
<th>PROPERTY</th>
<th>VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>poola/testnfs-vmware</td>
<td>anon</td>
<td>root</td>
</tr>
<tr>
<td>poola/testnfs-vmware</td>
<td>nohide</td>
<td>no</td>
</tr>
<tr>
<td>poola/testnfs-vmware</td>
<td>securityContexts</td>
<td>sec=sys,rw=*</td>
</tr>
<tr>
<td>poola/testnfs-vmware</td>
<td>shareState</td>
<td>online</td>
</tr>
<tr>
<td>poola/testnfs-vmware</td>
<td>gidMap</td>
<td>-</td>
</tr>
</tbody>
</table>

**Note:** Use this configuration only on a closed network where all hosts are trusted.
poola/testnfs-vmware  recursive         -
poola/testnfs-vmware  rootMapping       -
poola/testnfs-vmware  uidMap            -

The NFS share is ready to mount on VMware ESXi hosts.

A more secure option for sharing an NFS share to ESXi hosts is to limit root access to an explicit list of these hosts. The example below disables anonymous access and limits root access to the set of specified IP addresses:

```
CLI@nexenta> nfs share -o
anon=-1,securityContexts=sec=sys,rw=192.168.56.40,192.168.56.41,
root=192.168.56.40,192.168.56.41 poola/testnfs-vmware
```

```
CLI@nexenta> nfs get all poola/testnfs-vmware
PATH PROPERTY VALUE
poola/testnfs-vmware anon -1
poola/testnfs-vmware nohide no
poola/testnfs-vmware securityContexts sec=sys
root=192.168.56.40,192.168.56.41,rw=192.168.56.40,192.168.56.41
poola/testnfs-vmware shareState online
poola/testnfs-vmware gidMap -
poola/testnfs-vmware recursive -
poola/testnfs-vmware rootMapping -
poola/testnfs-vmware uidMap -
```

Create an Open NFS Share for Generic Clients

To configure an NFS share to be used as an open share for generic clients, we will share with anonymous access disabled and add an ACE with appropriate modify permissions for ‘everyone’ on the file system.

1. Create file system poola/testnfs-open

```
CLI@nexenta> filesystem create poola/testnfs-open
```

```
CLI@nexenta> fs list
PATH USED AVAIL REFER NFS SMB MOUNTPOINT
poola 102.1M 153.94G 26.6K no no /poola
poola/fs1 1.7M 153.94G 1.7M yes no /poola/fs1
poola/fs2 25.3K 153.94G 25.3K no no /poola/fs2
poola/testnfs-open 25.3K 153.94G 25.3K no no /poola/testnfs-open
poola/testnfs-vmware25.3K 153.94G 25.3K yes no /poola/testnfs-vmware
```
2. Enable NFS sharing on the file system with anonymous access disabled:

   CLI@nexenta> nfs share -o anon=-1 poola/testnfs-open

   If you do not want to set up a security type for your nfs share, use “none” as the security contexts as shown in the following command.

   CLI@nexenta> nfs share -o securityContexts=sec=none poola/testnfs-open

   CLI@nexenta> nfs get all poola/testnfs-open
   PATH                PROPERTY          VALUE
   poola/testnfs-open  anon              -1
   poola/testnfs-open  nohide            no
   poola/testnfs-open  securityContexts  sec=none
   poola/testnfs-open  shareState        online
   poola/testnfs-open  gidMap            -
   poola/testnfs-open  recursive         -
   poola/testnfs-open  rootMapping       -
   poola/testnfs-open  uidMap            -

3. Before the NFS share can be mounted by generic clients, we need to add an ACE on the file system giving modify permissions to ‘everyone’:

   CLI@nexenta> acl list poola/testnfs-open
   INDEX  TYPE   PRINCIPAL                        PERMISSIONS     FLAGS
   0      allow  owner@                           rwxpdDaARWcCos  fd-----
   1      allow  groupsid:Administrators@BUILTIN  rwxpdDaARWcCos  fd-----

   CLI@nexenta> acl set A+everyone@:modify_set:fd:allow poola/testnfs-open

   CLI@nexenta> acl list poola/testnfs-open
   INDEX  TYPE   PRINCIPAL                        PERMISSIONS     FLAGS
   0      allow  owner@                           rwxpdDaARWcCos  fd-----
   1      allow  groupsid:Administrators@BUILTIN  rwxpdDaARWcCos  fd-----
   2      allow  everyone@                        rwxpdDaARWc--s  fd-----

The file system is ready to mount on any NFS client on the network.

Enabling anonymous access on NFS share:

   1. To enable anonymous access on this NFS share, we can set the anon property of the NFS share to ‘nobody’ and add the appropriate ACE for user:nobody (read set in the example below):

   CLI@nexenta> user list
   LOGIN     UID    PRIMARYGROUP  COMMENT
   nobody    60001  nobody        NFS Anonymous Access User
noaccess 60002 noaccess No Access User
nobody4 65534 nogroup SunOS 4.x NFS Anonymous Access User
admin 100 other -
guest 101 other -

CLI@nexenta> nfs set anon=nobody poola/testnfs-open
CLI@nexenta> nfs get all poola/testnfs-open

<table>
<thead>
<tr>
<th>PATH</th>
<th>PROPERTY</th>
<th>VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>poola/testnfs-open</td>
<td>anon</td>
<td>nobody</td>
</tr>
<tr>
<td>poola/testnfs-open</td>
<td>nohide</td>
<td>no</td>
</tr>
<tr>
<td>poola/testnfs-open</td>
<td>securityContexts</td>
<td>sec=sys</td>
</tr>
<tr>
<td>poola/testnfs-open</td>
<td>shareState</td>
<td>online</td>
</tr>
<tr>
<td>poola/testnfs-open</td>
<td>gidMap</td>
<td>-</td>
</tr>
<tr>
<td>poola/testnfs-open</td>
<td>recursive</td>
<td>-</td>
</tr>
<tr>
<td>poola/testnfs-open</td>
<td>rootMapping</td>
<td>-</td>
</tr>
<tr>
<td>poola/testnfs-open</td>
<td>uidMap</td>
<td>-</td>
</tr>
</tbody>
</table>

CLI@nexenta> acl set A+user:nobody:read_set:fd:allow poola/testnfs-open
CLI@nexenta> acl list poola/testnfs-open

<table>
<thead>
<tr>
<th>INDEX</th>
<th>TYPE</th>
<th>PRINCIPAL</th>
<th>PERMISSIONS</th>
<th>FLAGS</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>allow</td>
<td>owner@</td>
<td>rwxpdDaARWcCos</td>
<td>fd-----</td>
</tr>
<tr>
<td>1</td>
<td>allow</td>
<td>groupsid:Administrators@BUILTIN</td>
<td>rwxpdDaARWcCos</td>
<td>fd-----</td>
</tr>
<tr>
<td>2</td>
<td>allow</td>
<td>everyone@</td>
<td>rwxpdDaARWc--s</td>
<td>fd-----</td>
</tr>
<tr>
<td>3</td>
<td>allow</td>
<td>user:nobody</td>
<td>r-----a-R-c---</td>
<td>fd-----</td>
</tr>
</tbody>
</table>

Setting Quotas on File System

NexentaStor allows you to limit the amount of disk space consumed by filesystem and its descendents. You can use the filesystem properties “quota and refquota” to dynamically manage the disk quota for a particular dataset and/or its descendents.

The filesystem property “quota” limits the overall capacity consumed by a dataset and all of its children, snapshots and clones. The property “refquota” on the other hand limits the capacity consumed by the dataset itself, fine grain control of what capacity is used for, what can be achieved by setting both properties, with quota set higher than refquota.

- **To set quota:**
  
  In the following example a quota of 1 GB is set on the filesystem you created.
  
  1. Set quota on a filesystem.
CLI@nexenta> fs set quota=1GB poola/testsmb

2. Verify the quota you set.
CLI@nexenta> fs get quota poola/testsmb

<table>
<thead>
<tr>
<th>PATH</th>
<th>PROPERTY</th>
<th>VALUE</th>
<th>SOURCE</th>
</tr>
</thead>
<tbody>
<tr>
<td>poola/testsmb</td>
<td>quota</td>
<td>1GB</td>
<td>local</td>
</tr>
</tbody>
</table>

You cannot set a quota to an amount less than is currently being used by a dataset. For example:

Note:

CLI@nexenta> fs set quota=10k poola/testsmb
Failed to set property quota to 10240 of dataset poola/testsmb: size is less than current used or reserved space.

✓ To set refquota:

1. Set a refquota on the filesystem poola/testsmb.
CLI@nexenta> fs set refquota=10MB poola/testsmb

2. Verify the refquota you set.
CLI@nexenta> fs get refquota poola/testsmb

<table>
<thead>
<tr>
<th>PATH</th>
<th>PROPERTY</th>
<th>VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>pools/testsmb</td>
<td>refquota</td>
<td>9.5M</td>
</tr>
</tbody>
</table>

The quota and refquota properties are replicated by High-Performance Replication and will be applied to both primary and secondary datasets. In cases where HPR snapshot retention policies differ between source and destination, you should make sure that quota is set high enough to accommodate the space used by the longest retention policy. Alternatively, you can use refquota to focus enforcement on the space used by the replicated dataset, independent of its snapshots and children.

Note:

Setting User and Group Quotas

NexentaStor allows you to limit the amount of space consumed by filesystem that are owned by a particular user or group. You can use the following commands to dynamically manage the disk quota for a user or a group. If your environment has a large number of users or groups, consider setting user and group quotas.

- **Group quotas**: Allocates the amount of space a group can use in a specific filesystem.
- **User quotas**: Specifies storage space a particular user in a specific filesystem.
1. To view the list of users:

   CLI@nexenta> user list
   nobody     60001  nobody        NFS Anonymous Access User
   admin      100    other         -
   guest      101    other         -
   testuser   102    other         -

2. To query user groups:

   CLI@nexenta> group list
   NAME      GID    USERS
   nobody    60001  nobody
   noaccess  60002  noaccess
   nogroup   65534  nobody4
   other     1000   testuser

3. To set a quota for a User/Group filesystem:

   CLI@nexenta> fs set userquota@admin=8G tank/fs1
   CLI@nexenta> fs set groupquota@admin=8G tank/fs1

   User and group info can be passed in the following form when setting up their quotas.

   POSIX name ("jack")
   POSIX id ("65001")
   SMB name@domain ("jack@domain.com")
   SMB SID ("S-1-234-567-89")

4. To view the available and used spaces for a specific user/group

   CLI@nexenta> fs get userquota@jack tank/fs1

   Note:
   - the total user quota or group quota of the descendent file system cannot exceed the amount of space assigned for the parent filesystem;
   - user or group quota gets applied transparently when a clone or a snapshot is created from a filesystem that has a user or group quota;
   - unprivileged users can only access their own disk space usage;
   - userquota and groupquota properties cannot be set on ZFS volumes, they can be set only on a file system or on a pool;
tank/fs1 userquota@jack 8G local

CLI@nexenta> fs get groupquota@jack tank/fs1
PATH PROPERTY VALUE SOURCE
tank/fs1 groupquota@jack 18M local

5. To view the general user or group disk space usage

CLI@nexenta> fs userspace tank/fs1
TYPE NAME USED QUOTA
POSIX admin 0 15.3M
POSIX jack 0 8G
SMB S-1-2-3-5 0 256M

CLI@nexenta> fs userspace -g tank/fs1
TYPE NAME USED QUOTA
POSIX admin 1.50K none
POSIX visitors 0 1M
SMB S-1-2-3-4 64M 1G

Note: At any point you can change the size limit on a filesystem created for a user.
Creating and Sharing iSCSI Volumes

In addition to file services, NexentaStor supports both iSCSI and Fibre Channel block services. This section provides an example of commands and steps required to create a volume, create iSCSI targets, target group and host group and share that volume as an iSCSI LUN.

Before we can create a volume, NexentaStor 5 requires the creation of a higher level dataset called a Volume Group. The default dataset hierarchy in NexentaStor 5 is pool/volume-groups/volumes. Volume Groups serve 2 main purposes:

- A VG provides a parent dataset with a customizable set of properties (such as block size or compression settings) that can be simply inherited by all volumes subsequently created in the Volume Group.
- A VG can act as a consistency group for local snapshots or replication snapshots of all the volumes it contains. This can be particularly useful when multiple volumes are configured to support a specific application. Grouping these volumes in the same VG makes taking application consistent snapshots of all the underlying volumes very easy.

Note: Support for VMware vStorage API for Array Integration (VAAI) block is enabled by default.

Creating Volume Groups and Volumes

This section uses the following name conventions:

- Volume group: sqlvg
- Volume: sql-1
- iSCSI Target Group: tg1
- host group: hg1

The steps involved in creating volume groups and volumes are:

1. Create a volume group “sqlvg” before you create a storage volume.

   CLI@nexenta> vg create poola/sqlvg
   CLI@nexenta> vg list
   PATH       USED    AVAIL    REFER   BLKSIZE
   poola/sqlvg 24.0K  153.94G  24.0K  32.0K

2. Create a volume in that volume group

   CLI@nexenta> vol create poola/sqlvg/sql-1 10G
   CLI@nexenta> vol list
   PATH     VOLSIZE USED    AVAIL    REFER   BLKSIZE
   poola/sqlvg/sql-1 10.00G 10.08G 153.94G 10.7K  32.0K

3. Verify that iSCSI Target service is enabled on the appliance

   CLI@nexenta> svc list
   NAME     DESCRIPTION    STATE
Sharing iSCSI Volumes

This section lists the commands related to sharing iSCSI volumes.

1. The first step is to verify that the iSCSI target service is enabled.
   CLI@nexenta> svc list iscsit

2. If the iSCSI target service is not online, enable it.
   CLI@nexenta> svc enable iscsit

3. To query and set iSCSI target service attributes:
   CLI@nexenta> svc get all iscsit
   CLI@nexenta> svc set <property> iscsit

4. In order to share our poola/sqlvg/sql-1 volume, we need to create an iSCSI Target Group that will contain one or more iSCSI Targets. In our example, we have 2 IP interfaces that we will configure as portals for 2 different iSCSI Targets:
   CLI@nexenta> ip list

   NAME        TYPE    STATE  ADDRESS
   e1000g0/v4  static  ok     192.168.56.5/24
   e1000g1/v4  static  ok     192.168.56.6/24
   e1000g2/v4  dhcp    ok     192.168.0.34/24
   lo0/v4      static  ok     127.0.0.1/8
   lo0/v6      static  ok     ::1/128

5. Create iSCSI target:
   CLI@nexenta> iscsitarget create 192.168.56.5
   New target 'iqn.2010-08.org.illumos:02:e2faf5b9-7b93-403e-f3df-84b5198a19be' has been created.
   CLI@nexenta> iscsitarget create 192.168.56.6
New target 'iqn.2010-08.org.illumos:02:08ba0ff1-2e4f-4b5a-f5ee-f36c765a9644' has been created.

6. We then create a single iSCSI Target Group (tg1) containing our 2 iSCSI Targets:

   CLI@nexenta> iscsitarget list
   NAME                                             PORTALS            AUTH     STATE
   02:08ba0ff1-2e4f-4b5a-f5ee-f36c765a9644  192.168.56.6:3260 default online
   02:e2faf5b9-7b93-403e-f3df-84b5198a19be  192.168.56.5:3260 default online

   CLI@nexenta> targetgroup create tg1 02:08ba0ff1-2e4f-4b5a-f5ee-f36c765a9644 02:e2faf5b9-7b93-403e-f3df-84b5198a19be
   CLI@nexenta> targetgroup list
   NAME  MEMBERS
   tg1   02:08ba0ff1-2e4f-4b5a-f5ee-f36c765a9644,02:e2faf5b9-7b93-403e-f3df-84b5198a19be

At this point, we can use this iSCSI Target Group to share our volume, either to any host that has access to the iSCSI targets, or to a specific Host Group with an explicit set of iSCSI initiators we want to map our iSCSI LUN to.

Sharing to Any Host on the Network

7. To share to any host on the network:

   CLI@nexenta> vol list
   PATH               VOLSIZE  USED    AVAIL    REFER  BLKSIZE
   poola/sqlvg/sql-1  10.00G   10.08G  153.94G  10.7K  32.0K

   CLI@nexenta> targetgroup list
   NAME  MEMBERS
   tg1   02:08ba0ff1-2e4f-4b5a-f5ee-f36c765a9644,02:e2faf5b9-7b93-403e-f3df-84b5198a19be

The LUN is created when the first mapping is saved to the appliance, and the blocksize can only be set with this first mapping. Default block size of the logical unit is 512 B. Use the -b option in the create command to set the blocksize.

   CLI@nexenta> lunmapping create -b 4096 poola/sqlvg/sql-1 tg1 all
   where b represents the Block size of the logical unit to map the volume on.

   CLI@nexenta> lunmapping list
   ID                           VOLUME             TARGETGROUP  HOSTGROUP  LUN
   0695AFC2686540CF00000000  poola/sqlvg/sql-1 tg1          all        0
Sharing to a Specific Set of iSCSI Initiators

To limit sharing to a specific set of iSCSI initiators, we first create a Host Group hg1 and then the appropriate lunmapping:

```
CLI@nexenta> hostgroup create hg1 iqn.2016-06.com.mydomain.iscsi:sqlserver
CLI@nexenta> hostgroup list
NAME MEMBERS
hg1 sqlserver
```

The LUN is created when the first mapping is saved to the appliance, and the blocksize can only be set with this first mapping. Default block size of the logical unit is 512 B. Use the -b option in the create command to set the blocksize.

```
CLI@nexenta> lunmapping create -b 4096 poola/sqlvg/sql-1 tg1 hg1
```

where b represents the Block size of the logical unit to map the volume on.

```
CLI@nexenta> lunmapping list
ID VOLUME TARGETGROUP HOSTGROUP LUN
0695AFC2686540CF00000000 poola/sqlvg/sql-1 tg1 hg1 0
```

Preparing iSCSI LUNs for Failover

For iSCSI shares to successfully failover, ensure that you have the following.

- HA service must be created with VIP(s) as shown in Step 2 under the section Configuring HA Service for the Shared Pool.
  
  Unless you create the VIP(s), the network clients will not be able to access the data in case of a failover.

- If you created a HA service without a VIP and want to add one, use the following command:
  
  CLI@nexenta> haservice add-vip poola vip05 9.8.7.6/255.0.0.0 smc-53-109:e1000g0,smc-53-110:e1000g0

  In the above example, the VIP vip05 with IP address 9.8.7.6 and netmask 255.0.0.0 is added to the HA service named poola.

- Targets must be configured as explained in Sharing iSCSI Volumes.

- Target groups must be configured as explained in Sharing iSCSI Volumes.
• LUNs are mapped as shown in Sharing to Any Host on the Network and Sharing to a Specific Set of iSCSI Initiators.

• Verify that you can mount volume shares for clients.

• Check for network connectivity between primary and failover node.

Sharing FC Volumes

When you connect FC ports to a NexentaStor appliance, they are automatically discovered by the system.

Changing the Default FC Ports

Fibre Channel ports operate in the following modes:

• Initiator - Enables NexentaStor to access remote FC targets. For example, you can connect LUNs from other NexentaStor appliances. By default, the FC ports are in initiator mode. To change the default mode to target, use the command below:

```
CLI@nexenta> config set system.fcDefaultPortMode=target
```

Reboot the appliance to reflect the changes made to the mode.

• Target - Provides the access to NexentaStor FC targets for remote initiators.

Switching Individual FC HBA Port Mode

You can configure the individual FC HBA port of QLogic or Emulex to “Target” or “Initiator” mode using the appliance variable “system.fcPortConfig”.

✓ To switch individual FC HBA ports:

1. View the list of FC initiators available.

```
CLI@nexenta> fcinitiator list
```

<table>
<thead>
<tr>
<th>NAME</th>
<th>NODEWWN</th>
<th>CURRSPEED</th>
<th>STATE</th>
</tr>
</thead>
<tbody>
<tr>
<td>wwn.21000024ff453dde</td>
<td>20000024ff453dde</td>
<td>8Gb</td>
<td>online</td>
</tr>
<tr>
<td>wwn.21000024ff453ddf</td>
<td>20000024ff453ddf</td>
<td>8Gb</td>
<td>online</td>
</tr>
<tr>
<td>wwn.10000090fa498c2e</td>
<td>20000090fa498c2e</td>
<td>unknown</td>
<td>offline</td>
</tr>
</tbody>
</table>

2. View the list of FC targets available.

```
CLI@nexenta> fctarget list
```

<table>
<thead>
<tr>
<th>NAME</th>
<th>NODEWWN</th>
<th>CURRSPEED</th>
<th>STATE</th>
<th>LOCATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>wwn.10000090fa498c2f</td>
<td>20000090fa498c2f</td>
<td>unknown</td>
<td>offline</td>
<td>local</td>
</tr>
</tbody>
</table>

3. Change the mode of the desired FC port from “target” to “initiator” or from “initiator” to “target” as needed.

```
CLI@nexenta> config set system.fcPortConfig append wnn=10000090fa498c2e mode=target
```
The above example shows switching an Emulex HBA port from initiator to target mode.

To switch it back to the initiator mode:

```bash
CLI@nexenta> config set system.fcPortConfig append wwn=10000090fa498c2e mode=initiator
```

4. Reboot the system to apply the changes made to the port.

5. Verify the changes made by viewing the list of FC targets.

```bash
CLI@nexenta> fctarget list
```

### Sharing a FC Volume

The steps required to share a volume as a Fibre Channel (FC) LUN are identical to the steps described above for iSCSI LUN. The only real difference is that Targets and Initiators are identified via World Wide Names (WWNs) instead of IQNs.

1. View the information on the FC HBA to see all available target ports.

```bash
CLI@nexenta> fctarget list
```

2. Create and name the target group to manage LUN mappings.

```bash
CLI@nexenta> targetgroup create <name> <FC target in terms of WWNs>
```

The following example shows a targetgroup (tgfc) created with the above WWNs.

```bash
Example:
CLI@nexenta> targetgroup create tgfc wwn.10000000c9bb4b5a, wwn.10000000c9bb4b5b
```

3. To verify the target group that was created:

```bash
CLI@nexenta> targetgroup list
```

4. To add or remove FC targets in the target group:

```bash
CLI@nexenta> targetgroup add <targetgroup> <FC target>
CLI@nexenta> targetgroup remove <targetgroup> <FC target>
```
Sharing to a Specific Set of FC Initiators

1. Create LUN mappings and share the FC LUN to a specific initiator.
   
   To share the FC LUN to a specific initiator, create a host group using one or more initiators.
   
   CLI@nexenta> hostgroup create <hostgroup> <wwn of FC initiator>
   
   Example:
   
   CLI@nexenta> hostgroup create hgfc wwn.21000024FF4899E9

2. Verify the created hostgroup.
   
   CLI@nexenta> hostgroup list
   
   NAME  MEMBERS
   
   hgfc  wwn.21000024FF4899E9

3. Create a volume group and volume as shown in Creating Volume Groups and Volumes for the FC LUN.
   
   Note: the volume that you share using FC must not be part of other mapping.

4. Map the LUN
   
   CLI@nexenta> lunmapping create <volume path> <target group name> <Host group of FC initiators>
   
   Where:
   
   <target group> - group of FC targets
   
   <volume-path> - path of the volume to be exposed by this target group
   
   The LUN is created when the first mapping is saved to the appliance, and the blocksize can only be set with this first mapping. Default block size of the logicalunit is 512 B. Use the -b option in the create command to set the blocksize.
   
   CLI@nexenta> lunmapping create -b 4096 poola/sqlvg/sql-1 tgfc hgfc
   
   where b represents the Block size of the logical unit to map the volume on.
   
   CLI@nexenta> lunmapping list
   
   ID                           VOLUME             TARGETGROUP  HOSTGROUP  LUN
   
   0695AFC2686540CF0000000000 poola/sqlvg/sql-1 tgfc         hgfc       0

5. Verify your LUN mappings and LU list after your mapping is completed.
   
   CLI@nexenta> lunmapping list
   
   ID                           VOLUME             TARGETGROUP  HOSTGROUP  LUN
   
   FD2A4FC33621F5F4000000000 poola/sqlvg/sql-1 tgfc         hgfc       0
   
   CLI@nexenta> logicalunit list
   
   VOLUME            VOLSIZE  WPROTECT  STATE
   
   poola/sqlvg/sql-1  2.79T    no        online

6. Display properties for the given LU(s) along with their sources.
CLI@nexenta> logicalunit get all poola/sqlvg/sql-1

<table>
<thead>
<tr>
<th>NAME</th>
<th>PROPERTY</th>
<th>VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>poola/sqlvg/sql-1</td>
<td>accessState</td>
<td>active</td>
</tr>
<tr>
<td>poola/sqlvg/sql-1</td>
<td>alias</td>
<td>/dev/zvol/rdsk/poola/sqlvg/sql-1</td>
</tr>
<tr>
<td>poola/sqlvg/sql-1</td>
<td>blockSize</td>
<td>512</td>
</tr>
<tr>
<td>poola/sqlvg/sql-1</td>
<td>exposedOverFC</td>
<td>no</td>
</tr>
<tr>
<td>poola/sqlvg/sql-1</td>
<td>exposedOverIscsi</td>
<td>yes</td>
</tr>
<tr>
<td>poola/sqlvg/sql-1</td>
<td>guid</td>
<td>63E7832E715EF529247DFC458F2FA0F0</td>
</tr>
<tr>
<td>poola/sqlvg/sql-1</td>
<td>mappingCount</td>
<td>1</td>
</tr>
<tr>
<td>poola/sqlvg/sql-1</td>
<td>state</td>
<td>online</td>
</tr>
<tr>
<td>poola/sqlvg/sql-1</td>
<td>volSize</td>
<td>20M</td>
</tr>
<tr>
<td>poola/sqlvg/sql-1</td>
<td>volume</td>
<td>poola/sqlvg/sql-1</td>
</tr>
<tr>
<td>poola/sqlvg/sql-1</td>
<td>wprotect</td>
<td>no</td>
</tr>
<tr>
<td>poola/sqlvg/sql-1</td>
<td>writebackCacheDisabled</td>
<td>yes</td>
</tr>
</tbody>
</table>

7. Define logical unit(s) properties for the given volume(s).

CLI@nexenta> logicalunit set [options] <properties> <volume>

Preparing FC LUNs for Failover

For FC shares to successfully failover, ensure that you have done the following.

1. Enable ALUA on any one of the HA cluster node.
   Ensure that you have cluster setup before enabling ALUA.
   CLI@nexenta> config set ha.alua.enabled=true

2. Verify if ALUA is enabled.
   CLI@nexenta> config list ha.alua

<table>
<thead>
<tr>
<th>NAME</th>
<th>FLAGS</th>
<th>VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>ha.alua</td>
<td>--</td>
<td>enabled: true</td>
</tr>
</tbody>
</table>

3. Targets must be configured as explained in Sharing FC Volumes
4. Target groups must be configured as explained in Sharing FC Volumes
5. LUNs are mapped as shown in Sharing to a Specific Set of FC Initiators

What Comes Next?

In the following chapter you will learn how to protect any dataset, be it a file system, volume group, or volume using some of the features available in NexentaStor.
This chapter covers the following topics:

- Protecting Data
- Configuring Snapshots and Snapshot Schedules
- Configuring High Performance Replication
- Managing the Created Replication Service
- Configuring NDMP for Backups
- Using Virus Scan Engines
- What Comes Next?

Protecting Data

Nexenta offers different types of protection services to protect the datasets such as pools, filesystems, volume groups, and volume. This chapter will introduce you to some of the methods available in the appliance to protect the datasets.

List of methods:

- Local Scheduled Snapshot service
  A snapshot is a read-only point-in-time representation of a file system, volume that can later be cloned. You can clone a snapshot to create an editable copy.

- Long Distance Replication Service
  Long distance replication service formally known as high performance replication service is a dataset protection service that generates snapshots at the primary appliance following a set schedule (Scheduled Replication) or on a continuous basis (Continuous Replication).

- NDMP
  Network Data Management Protocol (NDMP) is a networking protocol and an open standard for backing up data in a heterogeneous environment.
Configuring Snapshots and Snapshot Schedules

A snapshot refers to the state of a dataset at a certain point in time and is comprised of a set of reference markers or pointers to data stored on a disk or SAN. You can create and destroy a snapshot, but you cannot modify it. To create an editable copy, clone the snapshot. Snapshot allows you to safely rollback to the previous state after upgrades. You can create an almost unlimited number of snapshots because they do not require any additional storage. Snapshots are stored on the same disk as the source dataset.

Creating and Deleting Local Snapshots

To create, list, and delete unreplicated snapshots, see the commands in Table below. Snapshot names are prepended with the filesystem or volume path followed by the @ sign. For example, ABC/fs1@hpr-2016-07-25-07-29-54-041. Table lists basic operations that you can do on a snapshot.

<table>
<thead>
<tr>
<th>Task</th>
<th>Related CLI Command</th>
</tr>
</thead>
<tbody>
<tr>
<td>Create a snapshot</td>
<td>CLI@nexenta&gt; snapshot create [-o &lt;properties&gt;] &lt;snapshot&gt;</td>
</tr>
<tr>
<td>Example:</td>
<td>CLI@nexenta&gt; snapshot create poola/testsmb@snapa</td>
</tr>
<tr>
<td></td>
<td>where poola/testsmb is the filesystem</td>
</tr>
<tr>
<td>Verify properties of a specific snapshot</td>
<td>CLI@nexenta&gt; snapshot get (all</td>
</tr>
<tr>
<td>Example:</td>
<td>CLI@nexenta&gt; snapshot get all poola/testsmb@snapa</td>
</tr>
<tr>
<td>List all snapshots</td>
<td>CLI@nexenta&gt; snapshot list</td>
</tr>
<tr>
<td>Delete a snapshot</td>
<td>CLI@nexenta&gt; snapshot destroy &lt;snapshot&gt;...</td>
</tr>
<tr>
<td></td>
<td>If a hold exists on a snapshot such that it cannot be destroyed, attempts to destroy</td>
</tr>
<tr>
<td></td>
<td>the snapshot will return an ERROR. Release the hold on the snapshot using the</td>
</tr>
<tr>
<td></td>
<td>snapshot release command before destroying the snapshot.</td>
</tr>
<tr>
<td>Clone a snapshot</td>
<td>CLI@nexenta&gt; snapshot clone &lt;snapshot&gt; &lt;clone&gt;</td>
</tr>
<tr>
<td>Release a snapshot to be able to destroy</td>
<td>CLI@nexenta&gt; snapshot release &lt;tag&gt; &lt;snapshot&gt;</td>
</tr>
<tr>
<td>it if needed</td>
<td>&lt;tag&gt; represents the name of the hold tag to be destroyed.</td>
</tr>
<tr>
<td>View all the available snapshot</td>
<td>CLI@nexenta&gt; snapshot -h</td>
</tr>
<tr>
<td>commands</td>
<td></td>
</tr>
</tbody>
</table>
Creating a Local Scheduled Snapshot Service

You can automatically create a recurring snapshot (snapping job) of a file system or a volume group/volume.

Table 3-2: Scheduling Snapshots

<table>
<thead>
<tr>
<th>Task</th>
<th>Related CLI Command</th>
</tr>
</thead>
<tbody>
<tr>
<td>Create a recurring</td>
<td>CLI@nexenta&gt; snapping create [-nrtv] [--description=&lt;desc&gt;] cron=&lt;period&gt; --keep=&lt;n&gt;] &lt;dataset&gt; [&lt;name&gt;]</td>
</tr>
<tr>
<td>snapshot by creating a</td>
<td>In the example right below, a snapping job named <code>snaptsr</code> is created for the file system <code>pooltsr/fstsr</code>. Snapshots are to be taken every hour and the three most recent snapshots will be stored.</td>
</tr>
<tr>
<td>snapping job</td>
<td>CLI@nexenta&gt; snapping create --cron='hourly' --keep=3 poola/testsmmb snaptsr</td>
</tr>
<tr>
<td>Enable the snapping job</td>
<td>To run the snipping job you created with the configured <code>cron</code> schedule, you must enable it first.</td>
</tr>
<tr>
<td>Get list of snapping jobs and their</td>
<td>CLI@nexenta&gt; snapping enable &lt;snapping job name&gt;</td>
</tr>
<tr>
<td>status</td>
<td></td>
</tr>
<tr>
<td>Get the list of</td>
<td>CLI@nexenta&gt; snapping list</td>
</tr>
<tr>
<td>snapshots associated with a</td>
<td>CLI@nexenta&gt; snapping snapshots &lt;snapping job name&gt;</td>
</tr>
<tr>
<td>snapping job</td>
<td>Run a snapping job on-demand outside of the cron schedule</td>
</tr>
<tr>
<td></td>
<td>CLI@nexenta&gt; snapping snap-now &lt;snapping job name&gt;</td>
</tr>
<tr>
<td>Modify a snapping job</td>
<td>To modify the properties of a snipping job, you must disable it first.</td>
</tr>
<tr>
<td></td>
<td>CLI@nexenta&gt; snapping disable &lt;snapping job name&gt;</td>
</tr>
<tr>
<td></td>
<td>CLI@nexenta&gt; snapping set description=&quot;MyCo&quot; &lt;snapping job name&gt;</td>
</tr>
<tr>
<td>Add a schedule to a snapping job</td>
<td>A snapping job can have multiple schedules assigned to it. To add a schedule to the snapping job you created, use the following command.</td>
</tr>
<tr>
<td></td>
<td>CLI@nexenta&gt; snapping schedule-add [-nv] &lt;snapping job name&gt; &lt;cron&gt; &lt;keep&gt; [&lt;schedule name&gt;]</td>
</tr>
<tr>
<td>Delete a snapping job</td>
<td>CLI@nexenta&gt; snapping destroy &lt;snapping job name&gt;</td>
</tr>
<tr>
<td>Enable or disable a snapping</td>
<td>CLI@nexenta&gt; hpr schedule-enable &lt;service name&gt;&lt;schedule name&gt;</td>
</tr>
<tr>
<td>schedule</td>
<td>CLI@nexenta&gt; hpr schedule-disable &lt;service name&gt;&lt;schedule name&gt;</td>
</tr>
</tbody>
</table>
## Managing Snapshots

The following table lists the operations you can perform on a snapshot once it is created.

**Table 3-3: Managing Snapshots**

<table>
<thead>
<tr>
<th>Task</th>
<th>Related CLI Command</th>
</tr>
</thead>
<tbody>
<tr>
<td>List all available snapshotting commands</td>
<td>CLI@nexenta&gt; snapping –h</td>
</tr>
<tr>
<td>Clone a snapshot</td>
<td>By definition, snapshots are read-only. You can clone a snapshot to create an editable or writeable copy and then manage this clone separately. CLI@nexenta&gt; snapshot clone &lt;snapshot&gt; &lt;clone&gt; Where &lt;clone&gt; specifies the new clone file system or volume path.</td>
</tr>
<tr>
<td>Rolling back a snapshot</td>
<td>You can rollback a file system or volume group/volume to a snapshot of its previous state. CLI@nexenta&gt; snapshot rollback [-rdDfnv] &lt;snapshot&gt;</td>
</tr>
<tr>
<td>Set properties of a snapshot</td>
<td>CLI@nexenta&gt; snapshot set [-rnv] &lt;properties&gt; &lt;snapshot&gt; CLI@nexenta&gt; snapshot reset [-rnv] &lt;properties&gt; &lt;snapshot&gt; Resets a modifiable property for a given snapshot to either the inherited value from an ancestor object, a default value, or the deleted value depending on the semantics of the property.</td>
</tr>
<tr>
<td>Retrieve the values of a snapshot</td>
<td>CLI@nexenta&gt; snapshot get all &lt;snapshot&gt;</td>
</tr>
<tr>
<td>Put a hold on a snapshot</td>
<td>Putting a hold on a dataset snapshot prevents it from being destroyed. CLI@nexenta&gt; snapshot hold [-rnv] &lt;hold tag name&gt; &lt;snapshot&gt; CLI@nexenta&gt; snapshot holds lists all the snapshot holds you have configured</td>
</tr>
<tr>
<td>Removing a hold</td>
<td>To remove the hold on the snapshot, use the following command: CLI@nexenta&gt; snapshot release &lt;tag&gt; &lt;snapshot&gt;</td>
</tr>
<tr>
<td>Deleting a snapshot</td>
<td>If a hold exists on a snapshot, attempts to destroy that snapshot command will return an ERROR. Release the hold on the snapshot using the snapshot release command before destroying the snapshot. CLI@nexenta&gt; snapshot destroy [-rnv] &lt;snapshot&gt;</td>
</tr>
</tbody>
</table>


When a snapshot is cloned, a dependency is created between the clone and the snapshot such that you cannot delete the snapshot for as long as the clone exists. To make a file system or a volume independent of its origin snapshot, you can promote the dataset.

CLI@nexenta> snapshot promote <dataset>
Use this command only if the datasets do not belong to a HPR replication service.

<table>
<thead>
<tr>
<th>Task</th>
<th>Related CLI Command</th>
</tr>
</thead>
<tbody>
<tr>
<td>Promoting a cloned snapshot</td>
<td>When a snapshot is cloned, a dependency is created between the clone and the snapshot such that you cannot delete the snapshot for as long as the clone exists. To make a file system or a volume independent of its origin snapshot, you can promote the dataset. CLI@nexenta&gt; snapshot promote &lt;dataset&gt; Use this command only if the datasets do not belong to a HPR replication service.</td>
</tr>
<tr>
<td>Note</td>
<td>You can clone the snapshots that belong to a HPR protection service but do not promote these clones.</td>
</tr>
</tbody>
</table>
Configuring High Performance Replication

About HPR

High Performance Replication (HPR) is a dataset protection service that generates snapshots at the source dataset following a set schedule or on a continuous basis. These snapshots can be stored locally on the source appliance (same appliance where the HPR service was created) or locally and remotely in one or more secondary appliances. Replication is a means to do backup and archive that can be useful during disaster recovery, network failures, or sudden power outages. In the event of a disaster and when the source appliance becomes unavailable, the network clients can access their data from the destination site/appliance.

NexentaStor supports two types of replication:

- **Scheduled replication** - Enabled by default with the Enterprise Edition license, with a snapshot schedule of “every 15 minutes” or longer. SR replicates snapshots taken on predefined schedules on the source dataset. If the NexentaStor appliance has the continuous replication license option installed, the snapshot schedule for scheduled replication can be as tight as “every minute”.

- **Continuous replication** - Requires the continuous replication license option. CR delivers close to-zero Recovery Point Objective (RPO) over any distance without affecting application performance. CR works by asynchronously replicating every write transaction on the source dataset.

To avail of the continuous replication option, contact sales@nexenta.com.

This section lists the CLI commands involved in creating and scheduling replication services. For details on how to prepare your environment for HPR and for advanced replication configurations, see the High Performance Replication (HPR) Best Practices Guide in https://nexenta.com/products/documentation.

The replication service creation and scheduling process involves the following tasks:

- Set up your replication environment
  See Preparing for HPR
- Check what type of replication feature license is activated in your system
  See Licensing Requirements for the Replication Service
- Optionally, change the HPR password you set up during the NexentaStor installation
  See Managing the HPR Password
- Configure HPR service system attributes.
  See Configuring HPR Address to Send or Receive Replication Traffic
- Create a new replication service.
- List HPR services created.
- Enable/ Disable HPR service.
- On-demand start/ stop a replication service.
- Schedule replication services
  See Configuring a New Replication Service
Definition of Terms

This section uses the following terms:

Table 3-4: Terms and Descriptions

<table>
<thead>
<tr>
<th>Terms</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Protection service</td>
<td>Protection service is a NexentaStor data and metadata replication service. This replication service is possible only between NexentaStor 5.x appliances.</td>
</tr>
<tr>
<td>Scheduled replication</td>
<td>Scheduled replication is the default type of replication service that comes with the Enterprise Edition license. Scheduled replication generates snapshots of the datasets at the source appliance on a set schedule and replicates these scheduled snapshots on either the local pool on the same NexentaStor appliance or on a remote NexentaStor appliance.</td>
</tr>
<tr>
<td>Continuous replication</td>
<td>Continuous replication asynchronously sends every write transaction to the destination dataset and delivers as close to zero Recovery Point Objective as possible over any distance, without affecting performance application.</td>
</tr>
<tr>
<td>Source</td>
<td>Source represents the node where the data is synchronized from.</td>
</tr>
<tr>
<td>Destination</td>
<td>Destination represents the site where the data is synchronized to and can be either local dataset on the same appliance or a remote NexentaStor appliance. Note: When the replication service is running and if the destination dataset is a filesystem, the filesystem gets unmounted.</td>
</tr>
<tr>
<td>Primary</td>
<td>Primary represents the node where the replication service manager is running. See below for more details about Service Manager. So primary appliance can be either source or destination.</td>
</tr>
<tr>
<td>Secondary</td>
<td>Secondary represents where the replication service agent is running. See below for more details about Service agent. Secondary appliance can be either source or destination.</td>
</tr>
</tbody>
</table>

Primary appliance (replication manager)  Secondary appliance (replication agent)
Source dataset  Destination dataset
Destination dataset  Source dataset

Preparing for HPR

For a successful rollout of replication services, the following preparation steps need to be done.

Configure Network

Setup your replication environment.

Configure the logical network:

- Verify the static system management IP you created using the following command. (Note 0.0.0.0 is not supported)
CLI@nexenta> config list system.managementAddress

- If you need to change the management address after the installation see Changing Management Address.

- Identify available interfaces that will be used to transport the replication traffic.

- Enable jumbo frames for data replication interface to improve replication performance by making data transmissions more efficient.

- Pre-allocate one static IP address for each replication interface.

1. Add a physical network interface card if needed. To add an interface, verify that the new NIC is available on the system.

   CLI@nexenta> inventory nic

<table>
<thead>
<tr>
<th>NAME</th>
<th>MEDIATYPE</th>
<th>STATE</th>
<th>SPEED</th>
<th>MAC</th>
<th>DUPLEX</th>
</tr>
</thead>
<tbody>
<tr>
<td>e1000g0</td>
<td>Ethernet</td>
<td>up</td>
<td>1000</td>
<td>0:25:90:61:b0:14</td>
<td>full</td>
</tr>
<tr>
<td>e1000g1</td>
<td>Ethernet</td>
<td>unknown</td>
<td>0</td>
<td>0:25:90:61:b0:15</td>
<td>half</td>
</tr>
</tbody>
</table>

2. Configure the newly added interface. The following example assigns a static IP address to the e1000g0 NIC.

   CLI@nexenta> ip create [-ntv] static <name> <address>

   Example:

   CLI@nexenta> ip create static e1000g0/v4 10.3.10.38/24

3. View the NIC configuration to verify the newly added interface.

   CLI@nexenta> ip list

   System response:

<table>
<thead>
<tr>
<th>NAME</th>
<th>TYPE</th>
<th>STATE</th>
<th>ADDRESS</th>
</tr>
</thead>
<tbody>
<tr>
<td>e1000g0/v4</td>
<td>static</td>
<td>ok</td>
<td>10.3.10.38/24</td>
</tr>
<tr>
<td>e1000g1/v6</td>
<td>addrconf</td>
<td>ok</td>
<td>fe80::20c:29ff:fecd:82a6/10</td>
</tr>
</tbody>
</table>

4. If you have already assigned an IP address and need to update the IP address, destroy the IP address and then assign a new IP as in the previous command.

   CLI@nexenta> ip destroy <name>

   Example:

   CLI@nexenta> ip destroy e1000g0/v4

- In case of replication from HA to HA, ensure that the management IP on all the 4 appliance nodes are set to static IPs.

Table 3-5: Recommendations for Network Interface Address

<table>
<thead>
<tr>
<th>Interface</th>
<th>Required and Recommended</th>
</tr>
</thead>
<tbody>
<tr>
<td>Management Network</td>
<td>Required: Fast Ethernet or Gigabit Ethernet adapter, DHCP or static network address.</td>
</tr>
<tr>
<td>Interface</td>
<td>Recommended: dedicated network interface, IPMP or LACP link aggregation.</td>
</tr>
<tr>
<td>Interface</td>
<td>Required and Recommended</td>
</tr>
<tr>
<td>---------------------------</td>
<td>------------------------------------------------------------------------------------------</td>
</tr>
<tr>
<td>Replication Data Network</td>
<td>Required: Gigabit Ethernet adapter, static network address.</td>
</tr>
<tr>
<td></td>
<td>Recommended: dedicated network interface, 10 Gigabit Ethernet, IPMP or LACP link aggregation, jumbo frames.</td>
</tr>
<tr>
<td>Cluster Heartbeat Network</td>
<td>Required: Fast Ethernet or Gigabit Ethernet adapter, static network address.</td>
</tr>
<tr>
<td></td>
<td>Recommended: dedicated network interface.</td>
</tr>
<tr>
<td>Cluster Failover Network</td>
<td>Required: Gigabit Ethernet adapter, static network address.</td>
</tr>
<tr>
<td></td>
<td>Recommended: dedicated network interface, 10 Gigabit Ethernet, IPMP or LACP link aggregation, jumbo frames.</td>
</tr>
</tbody>
</table>
Licensing Requirements for the Replication Service

NexentaStor supports the following two types of replication services:

- Scheduled replication
- Continuous replication

To avail of the continuous replication option, contact sales@nexenta.com.

To verify if the continuous replication service is activated, run the following command. Look for the `continuousReplication` feature in the “features” property.

```
CLI@nexenta> license show

PROPERTY VALUE
guid 44454c4c-3600-104b-804c-b9c04f4e3232
valid yes
status ok
type ENTERPRISE-TRIAL (Nexenta Internal)
product NexentaStor
version 5.2
licensee Nexenta-xxxxx@nexenta.com
serial SR-DEV-NS-201617669
features allFlash, fibrechannel, highAvailability, continuousReplication, scheduledReplication
issued Thu Sep 29 17:00:00 2016
expires Sun Nov 13 16:00:00 2016
capacity no limit
maintenance Thu Sep 29 17:00:00 2016 - Sun Nov 13 16:00:00 2016 (valid)
```

To activate a license key with the optional continuous replication feature:

```
CLI@nexenta> license activate <Activation Token>
```

Managing the HPR Password

When installing the NexentaStor appliance, you must have set the HPR password. Before configuring the HPR service, verify that the replication password is configured and the same on all nodes in the replication group. For security purpose, NexentaStor allows you to configure the HPR service between the nodes that share the same password. If you are unsure that your appliances have the same password, you can reset the password using this command:

```
CLI@nexenta> hpr password-set [--password=<str>]
```
Configuring HPR Address to Send or Receive Replication Traffic

To configure the interface to send or receive all replication traffic on your replication node, see this example:

1. **To view existing values for HPR system properties:**

   ```
 CLI@nexenta> config list hpr

 NAME FLAGS VALUE
 hpr.connectTimeout -- 3000
 hpr.dataAddress -- -
 hpr.dataPort -- 6000
 hpr.heartbeatFaultTolerance -- 3
 hpr.heartbeatInterval -- 10000
 hpr.requestTimeout -- 30000
 hpr.syncMaxAttempts -- 12
 hpr.syncRetryInterval -- 15000
 hpr.totalMemoryLimit -- 25
   ```

2. **To set HPR service data address:**

   ```
 CLI@nexenta> config set hpr.dataAddress = <IP address of the node that will send or receive the replication data>

 Example:
 CLI@nexenta> config set hpr.dataAddress=10.3.10.38
   ```

3. **To verify the HPR service data address:**

   ```
 CLI@nexenta> config get value hpr.dataAddress

 PROPERTY VALUE
 path hpr.dataAddress
 type variable
 value 10.3.10.38
   ```

   Depending on the direction of the replication, the interface that is configured as data address will begin to send or receive replication data.

---

**Note:** For successful remote replication, you must configure the HPR data interface explicitly.
Configuring a New Replication Service

The steps below directs you to create a scheduled replication service named SR-A2B, between Node A and Node B with the source dataset poola/primary-fs residing on Node A and the destination dataset poolb/secondary-fs on Node B.

Figure 3-1: Example of a Scheduled Replication Service between two NexentaStor Appliances.

1. Confirm that you are licensed for Scheduled Replication or Continuous Replication.
2. Create a new replication service

You can create a protection service that generates snapshots at the source appliance following a set schedule or on a continuous basis. These snapshots can be stored locally on the source appliance (same appliance where the HPR service was created) or locally and remotely in both the source and destination appliances. In order to create a local-to-remote replication, the remote IP should be added along with the destination dataset. You may also use fully qualified hostnames in the place of IP.

When you select a source dataset for the replication service, you must specify whether to replicate sub-folders of the dataset or include parent dataset in the replication stream. If you want to use the recursive property, you must select the following flag –r or --recursive in the HPR create command.

```
CLI@nexenta> hpr create [-r] [-p] [-v] [-f] [-l] [-i <value>] [-n <value>] [-t <value>] [-s <value>] <source> <destination> <name>
```

The example below creates a local-to-remote replication service named SR-A2B, with the remote management IP address specified, with scheduled type (as opposed to continuous type), with source poola/primary-fs and destination of poolb/secondary-fs.

```
CLI@nexenta> hpr create -r scheduled poola/primary-fs https://10.3.10.38/24poolb/secondary-fs SR-A2B
```
3. Optionally, add a schedule for the service you just created.

The following example configures a schedule called “SR-A2B_sced” for the replication service “SR-A2B” that starts every 15 minutes. This example retains the last 2 snapshots on the source and 3 snapshots on the destination.

CLI@nexenta> hpr schedule-add [-nv] <service-name> <cron> <keep-source> <keep-destination> [schedule-name]

Example:

CLI@nexenta> hpr schedule-add SR-A2B "*/15 * * * *" --keep-source=2 --keep-destination=3 SR-A2B_sced

4. Enable the hpr service.

Replication services of type continuous starts immediately once the service is enabled. For scheduled services, replication starts according to the defined schedule.

CLI@nexenta> hpr enable <name>

Example:

CLI@nexenta> hpr enable SR-A2B

5. Run the service.

To manually trigger the replication service any time, overriding the configured replication schedule, use the following command.

CLI@nexenta> hpr run-once <name>

Once the command is run, the HPR service takes snapshots and replicates them from source appliance to destination site/appliance.

6. Verify the snapshot was replicated to the destination.

CLI@nexenta> hpr get all SR-A2B

<table>
<thead>
<tr>
<th>NAME</th>
<th>PROPERTY</th>
<th>VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>SR-A2B</td>
<td>commonSnapshot</td>
<td>hpr-ondemand-2016-07-21-07-21-16-450</td>
</tr>
<tr>
<td>SR-A2B</td>
<td>destination</td>
<td>poolb/secondary-fs</td>
</tr>
<tr>
<td>SR-A2B</td>
<td>ignoreProperties</td>
<td>-</td>
</tr>
<tr>
<td>SR-A2B</td>
<td>isManager</td>
<td>yes</td>
</tr>
<tr>
<td>SR-A2B</td>
<td>isRunning</td>
<td>yes</td>
</tr>
<tr>
<td>SR-A2B</td>
<td>isSyncing</td>
<td>no</td>
</tr>
<tr>
<td>SR-A2B</td>
<td>maxBufferSize</td>
<td>100</td>
</tr>
<tr>
<td>SR-A2B</td>
<td>name</td>
<td>rtl_srv1</td>
</tr>
<tr>
<td>SR-A2B</td>
<td>recursive</td>
<td>yes</td>
</tr>
<tr>
<td>SR-A2B</td>
<td>replaceProperties</td>
<td></td>
</tr>
<tr>
<td>SR-A2B</td>
<td>state</td>
<td>enabled</td>
</tr>
<tr>
<td>SR-A2B</td>
<td>type</td>
<td>scheduled</td>
</tr>
</tbody>
</table>

7. Check the retention policy and the scheduler.
In any of the supported deployment topologies, you can configure different retention policies at the Primary appliance and at the Secondary appliances.

CLI@nexenta> hpr schedules SR-A2B
NAME       CRON       KEEPSOURCE KEEPDESTINATION DISABLED
SR-A2B_sced  */5 * * * 2            3               no

8. View all the snapshots belonging to the HPR service you just created.

CLI@nexenta> hpr snapshots SR-A2B
SNAPLISTID SERVICE SCHEDULE
CRON SOURCESNAPSHOTS DESTINATIONSNAPSHOTS
501ca190-8a71-11e6-addd-7d6588903bbb SR-A2B SR-A2B_sced
1 * * * * 2/11 2/11
Managing the Created Replication Service

The following table enumerates the basic CLI commands involved in managing the replication services after they are created. For additional information on these commands, type:

- For the man page of the HPR command:
  
  CLI@nexenta> man hpr

  For its subcommands prepended with service.

- To get the list of HPR subcommands:
  
  CLI@nexenta> hpr -h

- For subcommand usage syntax and options:
  
  CLI@nexenta> hpr <subcommand> --help

Table 3-6: Managing Created Replication Service

<table>
<thead>
<tr>
<th>Task</th>
<th>Related CLI Command</th>
</tr>
</thead>
<tbody>
<tr>
<td>List the HPR services created</td>
<td>CLI@nexenta&gt; hpr list</td>
</tr>
</tbody>
</table>
| Enable/disable an HPR service | Replication services of type continuous starts immediately once the service is enabled. For scheduled services, replication starts according to the defined schedule.  
  CLI@nexenta> hpr enable <service name>  
  CLI@nexenta> hpr disable <service name> |
| Query HPR service attributes  | List the property names and values for a specific replication service:  
  CLI@nexenta> hpr get all <service name> |
| Modify HPR service attributes | CLI@nexenta> hpr set <property name>=<value> <service name> |
| On-demand start/stop of a replication service | To begin or end a replication service, overriding the configured replication schedule, you can use the following subcommands:  
  CLI@nexenta> hpr run-once <service name>  
  CLI@nexenta> hpr stop <service name> |
Table 3-7: Managing Snapshots Associated with the Service

<table>
<thead>
<tr>
<th>Task</th>
<th>Related CLI Command</th>
</tr>
</thead>
<tbody>
<tr>
<td>Delete a replication service</td>
<td>CLI@nexenta&gt; hpr destroy [-fnv] [--source-snapshots] [--destination-snapshots] [--destination] &lt;name&gt;</td>
</tr>
<tr>
<td></td>
<td>The following is an example to force the deletion of a replication service even if it’s in a middle of replicating data. A service deletion operation deletes the snapshots created by the service on the source and destination datasets and destroys the destination datasets.</td>
</tr>
<tr>
<td></td>
<td>CLI@nexenta&gt; hpr destroy -f --source-snapshots --destination-snapshots --destination SR-A2B</td>
</tr>
<tr>
<td>Clear detected faults</td>
<td>CLI@nexenta&gt; hpr clear &lt;service name&gt;</td>
</tr>
<tr>
<td>Recover broken replication</td>
<td>CLI@nexenta&gt; hpr recover &lt;service name&gt;</td>
</tr>
</tbody>
</table>

Table 3-7: Managing Snapshots Associated with the Service

<table>
<thead>
<tr>
<th>Task</th>
<th>Related CLI Command</th>
</tr>
</thead>
<tbody>
<tr>
<td>List snapshots associated with a replication service</td>
<td>CLI@nexenta&gt; hpr snaplist-find [-s &lt;field&gt;]... [-S &lt;field&gt;]...[-O &lt;flags&gt;] &lt;service name&gt;</td>
</tr>
<tr>
<td></td>
<td>&lt;service name&gt; Name of the replication service</td>
</tr>
<tr>
<td>Delete list of snapshots associated with a replication service</td>
<td>CLI@nexenta&gt; hpr snaplist-delete [-nv] &lt;service name&gt; &lt;snapshotlist-id&gt;</td>
</tr>
<tr>
<td></td>
<td>&lt;service name&gt; Name of the replication service. &lt;snapshotlist-id&gt; Id of snapshot list</td>
</tr>
<tr>
<td>Claim snapshots belonging to a deleted schedule</td>
<td>To allow a schedule to claim a list of snapshots that belonged to a deleted schedule, run the following command:</td>
</tr>
<tr>
<td></td>
<td>CLI@nexenta&gt; hpr snaplist-claim [-nv] &lt;service name&gt; &lt;schedule name&gt; &lt;snaplist-id&gt;</td>
</tr>
<tr>
<td></td>
<td>Where the &lt;schedule name&gt; represents the replication schedule that will claim the snapshots.</td>
</tr>
</tbody>
</table>

Scheduling Replication Services

Table 3-8 enumerates the CLI commands involved in managing schedules for replication services. A scheduled replication service replicates data following one or more specified schedule(s).
### Table 3-8: Scheduling Replication Services

<table>
<thead>
<tr>
<th>Task</th>
<th>Related CLI Command</th>
</tr>
</thead>
<tbody>
<tr>
<td>Verify schedule status</td>
<td>CLI@nexenta&gt; hpr schedules &lt;service name&gt;</td>
</tr>
</tbody>
</table>
| Enable/disable a schedule| CLI@nexenta> hpr schedule-disable <service name> <schedule name>  
CLI@nexenta> hpr schedule-enable <service name> <schedule name> |
| Rename a schedule        | CLI@nexenta> hpr schedule-rename <service name> <schedule name>                     |
| Delete a schedule        | CLI@nexenta> hpr schedule-remove <service name> <schedule name>                    |
| Modify a schedule        | CLI@nexenta> hpr schedule-set <properties> <Service Name> <schedule name>          |

Disable the HPR service before doing the following actions:
- modifying its attributes,
- adding or removing a schedule,
- flipping the direction of replication.
Configuring NDMP for Backups

Prerequisites

In order to back up NexentaStor datasets to a tape drive or to a virtual tape device, you need:

- A backup software compliant with NDMP version 4 installed on a non-NexentaStor appliance. For example, Commvault.
- A tape drive connected to your NexentaStor appliance or a virtual tape drive. NexentaStor enables the NDMP management software to copy NexentaStor datasets to the attached tape drive.
  Your third party client backup software performs the archiving functions, such as setting the backup schedule.

Configuring and Managing NDMP

You must set up an NDMP service on your NexentaStor appliance in order to enable the client backup software to transfer NexentaStor datasets over the default TCP port 10000.

Enable the Service

1. Verify if the NDMP service is online. If not, enable it:
   
   CLI@nexenta> svc list ndmp
   CLI@nexenta> svc enable ndmp

Set the Stream Format Properties

2. To query and set NDMP service attributes, including NDMP version:
   
   CLI@nexenta> svc get all ndmp
   CLI@nexenta> svc set <NDMP property> ndmp
   
   Depending on the type of files you want to backup, enable or disable these properties: darSupport, tarBackupFormat, dumpBackupFormat.

Configure the Authentication to Allow the Third Party Software to Access the Dataset

3. Enable, disable, and list authentication types (clear-text or cram-md5) using the following commands. The credentials you configure will be used by the backup application to access your NexentaStor datasets.
   
   CLI@nexenta> ndmpauth disable [-nv] <auth-type>
   CLI@nexenta> ndmpauth enable [-nv] <auth-type> <username> [--password=pass]
   CLI@nexenta> ndmpauth list
Troubleshooting

If you are using tape drives, below are several useful commands to use.

- To list the tape drives attached to your NexentaStor appliance:
  
  CLI@nexenta> inventory tape-device

  Sample output:

  NAME  PRODUCT  REV  SERIAL
  /dev/scsi/changer/c2t5000E1112CF4D003d1  3573TL  C.30 00X4U78K2426_LL0

- To get the status of a specific tape drive, see example below.

  CLI@nexenta> mtx -f /dev/scsi/changer/c2t5000E1112CF4D003d1 status

  Sample output:

  Storage Changer /dev/scsi/changer/c2t5000E1112CF4D003d1:3 Drives, 47 Slots ( 0 Import/Export )
  Data Transfer Element 0:Empty
  Data Transfer Element 1:Empty
  Data Transfer Element 2:Empty
  Storage Element 1:Full :VolumeTag=000118L4
  Storage Element 2:Full :VolumeTag=000117L4
  Storage Element 3:Full :VolumeTag=000104L4

Note:

If needed to back up a replicated dataset at the destination site, ensure that the dataset is mounted in read-only mode. Mounted in read-only mode destination filesystem is required for NDMP-based backup environment.

See NexentaStor High Performance Replication User Guide for information on mounting the dataset to be backed up in read-only mode.
Using Virus Scan Engines

About NexentaStor vscan

To use NexentaStor vscan service, you must use a third-party VirusScan engine like McAfee on an external host to perform virus scanning operation on files. You may configure multiple scan engines for use by the NexentaStor vscan service. When you use multiple scan engines the file scan requests are distributed among the configured scan engines to balance the load. NexentaStor will issue a scan request to Virus Scan engine every time an open/close operation request is issued from the client to the NAS platform.

Note:
- NexentaStor vscan can be run on either NFS or CIFS.
- NexentaStor vscan service is not supported on any host supporting multi-tenant configurations. So do not enable this service in a Multi-tenant environment.

This section describes how to use McAfee VirusScan Enterprise for use as a virus scan engine with the NexentaStor Appliance vscan service.

Prerequisites

To enable virus scanning services with NexentaStor, the following items need to be in place:

- A 3rd-party virus scanning engine that supports ICAP (for example, McAfee) installed on a server.
- A port available in NexentaStor to communicate with the virus scan engine. The vscan service on the NexentaStor appliance uses port 1344 by default.

Note:
Ensure that the port 1344 is not blocked by the firewalls in your environment.

Managing Virus Scan Services on a NexentaStor Appliance

- Set up the vscan service on the NexentaStor appliance:
  1. Verify that the virus scan service in your NexentaStor system is online. If not, enable it.
     
     CLI@nexenta> svc list vscan
     CLI@nexenta> svc enable vscan
  2. Query and set virus service attributes.
     
     CLI@nexenta> svc get all vscan
     CLI@nexenta> svc set <property>=<value> vscan

- Set up the vscan engine:
  1. To add, delete, and list virus scan engines.
     
     CLI@nexenta> vscan create <vscan engine>
     CLI@nexenta> vscan destroy <vscan engine>
     CLI@nexenta> vscan list
2. Query and set virus engine attributes.
   
   CLI@nexenta> vscan get all <vscan engine>
   CLI@nexenta> vscan set <property>=<value> <vscan engine>

   ❖ **Configure vscan on the NexentaStor appliance to point to the McAfee virus scan engines IP address.**

   1. After setting up the Virus Scan Engine (VSE), configure vscan on the NXS 5 node to point to the McAfee scanner through our “vscan” command.
      
      CLI@nexenta> vscan set host=10.3.53.119 <vscan engine ID>

   ❖ **Enable the virus scan option on the filesystem share you want checked for viruses.**

   1. Enable vscan on the filesystem.
      
      CLI@nexenta> filesystem set vscan=yes poola/poola_fs

   2. Verify that the vscan was enabled on the filesystem.
      
      CLI@nexenta> filesystem get vscan poola/poola_fs
      
      PATH      PROPERTY  VALUE  SOURCE
      poola/poola_fs  vscan     yes    inherited

   **Setting File Size, Type**

   You can set the maximum size of files that should be virus scanned, and also specify whether access will be allowed or denied to files larger than the prescribed max-size.

   1. To set the size.
      
      CLI@nexenta> config set vscan.maxSize=1G

   2. To specify whether access will be allowed or denied to files larger than the maximum size.
      
      CLI@nexenta> config set vscan.maxSizeAction=allow | deny

   3. To set the type of files to be scanned and which should be excluded during virus scanning add a comma-separated list of file type extension matching rules.
      
      CLI@nexenta> config set vscan.types=+exe,+jpg,-*
      
      Where
      
      + includes file type in virus scanning
      - excludes file type from virus scanning

   Now that you have enabled the vscan service on the filesystem, you can mount the NFS/CIFS share and create/access data on that share from a different client machine. This will trigger the McAfee scans.

   **Monitoring vscan Status**

   1. To view the status of vscan service including the information about vscan engines, do the following:
      
      CLI@nexenta> vscan status
      Vscan service status:
scanned  0
infected  0
failed    0
cleaned   0

Vscan engines status:
ENGINE     ERRORS
localhost  0

2. To reset the vscan service statistics counters:

   CLI@nexenta> vscan reset-stats
   Resetting vscan statistics

Checking vscan Related Messages in the NexentaStor Syslog

1. To see the most recent 100 syslog messages.

   CLI@nexenta> journal tail -c 100 messages

2. To test if the vscan engine scans for virus, do the following:

   1. See http://www.eicar.org/86-0-Intended-use.html for suggestions on how to inject a
      string with a virus that is not harmful.

   2. Copy the string on a text file or Word document in a Windows client folder that is
      mounted on the NexentStor file system you created.

3. Run the following command in the NexentaStor appliance.

   CLI@nexenta> journal show messages:

   Virus scanning is successfully running if you see a log entry similar to the message below.

   Example of log entry:

4. To verify from the virus scan engine server, navigate to the VirusScan Console → right click on
ICAP AV Scanner → select View Log on the pulldown menu.

   Example of log entries:
   9/23/2016  4:16:22 PM  Scan Started  WIN-Q2TL2Q9R8OM  Scan Request Received From :ns501d  File to scan: C:\Windows\TEMP\VSEIcapTempFiles\092320161616221_New%20Text%20Document.txt
   9/23/2016  4:16:22 PM  Scan Result  No Action Taken (Clean failed because the detection isn't cleanable)  File from filer ns501d scanned:
   C:\Windows\TEMP\VSEIcapTempFiles\092320161616221_New%20Text%20Document.txt  EICAR test file
What Comes Next?

The following chapter covers the details on how to monitor and investigate key aspects of appliance; how to replace a disk; how to send important system information for Nexenta support service (i.e. core dumps, system configuration files, system logs and so on).
Fault Management

This chapter covers the following topics:

- Alerts and Events
- Viewing NexentaStor Logs
- Dial-Home and Call-Home Information
- Bundle Services
- Managing Boot Environments
- Backup and Restore of NexentaStor Boot Environment
- Troubleshooting/Replacing Data Devices
- Modify Resilver/Scrub Priority
- Measuring Network Performance
- Diagnose Unsuccessful HA Service Start
- Visibility to Storage SAN
- Visibility to LUNs
- Save/Restore LUN Mappings from SMB/NFS Share
- Using SNMP for Fault Management
- About SNMP Manager and SNMP Agent
- Enable SNMP Service
- Enable/Disable and Configure Custom SNMP Traps
- Configure SNMP Trap Handler
- Import NexentaStor MIB Files
- Query SNMPv2c
- What Comes Next?

This chapter includes pointers in troubleshooting and diagnosing problems you may encounter.
Alerts and Events

The following commands can be used to troubleshoot problems by providing a detailed list of the system events. These commands list all hardware or software problems, or a transient condition that needs attention (for example, CPU over-utilization). Each problem is represented by a case that is referenced by a unique UUID. You can view the cases and track the associated events. You can also generate low-level reports based on the cases created. Users can modify a case using the repaired, replaced, and acquit subcommands.

1. Show alert cases

   CLI@nexenta> alert cases [-av] [-u <uuid>] [-c <code>] [-t <time-spec>]

   Example:

   CLI@nexenta> alert cases --all

<table>
<thead>
<tr>
<th>UUID</th>
<th>TIME</th>
<th>CODE</th>
<th>SEVERITY</th>
</tr>
</thead>
<tbody>
<tr>
<td>71af9891-2fe9-cbcc-f418-b6771433e700</td>
<td>Sep 22 15:43:09</td>
<td>SMF-8000-YX</td>
<td>major</td>
</tr>
<tr>
<td>fd853280-8115-1e6-9483-dd2e65e98d14</td>
<td>Sep 22 15:43:32</td>
<td>NEX-8004</td>
<td>critical</td>
</tr>
</tbody>
</table>

2. List events describing the details associated with a case

   CLI@nexenta> alert list [-u <uuid>] [-c <code>] [-T <type>] [-t <from>]

   Example:

   CLI@nexenta> alert list -u 71af9891-2fe9-cbcc-f418-b6771433e700

<table>
<thead>
<tr>
<th>TIME</th>
<th>EVENTTYPE</th>
<th>CODE</th>
<th>UUID</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sep 22 15:43:09</td>
<td>suspect</td>
<td>SMF-8000-YX</td>
<td>71af9891-2fe9-cbcc-f418-b6771433e700</td>
</tr>
<tr>
<td>Sep 27 14:20:32</td>
<td>repaired</td>
<td>FMD-8000-4M</td>
<td>71af9891-2fe9-cbcc-f418-b6771433e700</td>
</tr>
<tr>
<td>Sep 27 14:20:33</td>
<td>resolved</td>
<td>FMD-8000-6U</td>
<td>71af9891-2fe9-cbcc-f418-b6771433e700</td>
</tr>
</tbody>
</table>

3. To view the detailed description on the alert case

   CLI@nexenta> alert cases --verbose --uuid fd853280-8115-1e6-9483-dd2e65e98d14

<table>
<thead>
<tr>
<th>PROPERTY</th>
<th>VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>uuid</td>
<td>fd853280-8115-1e6-9483-dd2e65e98d14</td>
</tr>
<tr>
<td>time</td>
<td>Sep 22 15:43:32</td>
</tr>
<tr>
<td>code</td>
<td>NEX-8004-ED</td>
</tr>
<tr>
<td>severity</td>
<td>critical</td>
</tr>
<tr>
<td>type</td>
<td>upset</td>
</tr>
<tr>
<td>faulty</td>
<td>no</td>
</tr>
<tr>
<td>diagnoseEngine</td>
<td>sw://path=/usr/nef/workers/alert/diagLicense.js</td>
</tr>
<tr>
<td>description</td>
<td>License for the server has expired</td>
</tr>
<tr>
<td>impact</td>
<td>Functionality is restricted to basic operations</td>
</tr>
</tbody>
</table>
4. To view the telemetry report associated with the above alert case:

   CLI@nexenta> alert reports <case-id>

Example:

   CLI@nexenta> alert reports fd853280-8115-11e6-9483-dd2e65e98d14

PROPERTY VALUE
reportId   fd849640-8115-11e6-9483-dd2e65e98d14
class      ereport.nef.license.time.error
time       Sep 22 15:43:32
detector   sw://path=/usr/nef/workers/alert/detectLicense.js
resource   nef://license
value       2016-09-22T22:43:32.880Z

Also see the following subcommands:

<table>
<thead>
<tr>
<th>Task</th>
<th>Related CLI Command</th>
</tr>
</thead>
</table>
| Ignore failing case and resolve it.            | alert acquit <uuid>  
Options: uuid is the identifier of case which should be acquitted. |
| Remove closed cases, case events, and reports. | alert purge [<type>]  
This does not remove FMA objects. |
| Notify the system that the faulty resource has been repaired. | alert repaired <fmri>  
Options: fmri is identifier of the faulty resource. |
| Notify the system that the faulty resource has been replaced. | alert replaced <fmri>  
Options: fmri is identifier of the replaced resource. |

Viewing NexentaStor Logs

The following are useful commands that will help troubleshoot your NexentaStor deployment:

- To view values for the system parameters use config list command.

  CLI@nexenta> config list
• To query what version of NexentaStor was installed and whether it is activated use software version and software list

   CLI@nexenta> software version -v
   CLI@nexenta> software list

• To display license terms and check license status.

   CLI@nexenta> license show

• To get a summary of system metrics.

   CLI@nexenta> system status

• To list installation and syslog message logs.

   CLI@nexenta> journal list -o name,file
   NAME   FILE
   install/caiman /var/log/install/install_log
   install/nef   /var/log/install/nef_log
   install/messages /var/log/install/messages
   messages   /var/adm/messages

• To view the system logs

   CLI@nexenta> journal show messages
   System response:
   Oct  8 03:15:00 smc-53-109 krrp: [ID 832813 kern.notice] NOTICE: A new
   session has been registered (id: [123bc870-8d40-11e6-9050-0153fdec8120])
   Oct  8 03:15:00 smc-53-109 krrp: [ID 623046 kern.notice] NOTICE: PDU
   Engine config
   ig: dblk_head_sz:[0], dblk_data_sz:[1024], max_mem:[100 MB],
   dblks_per_pdu:[513], prealloc:[NO]
   Oct  8 03:15:00 smc-53-109 krrp: [ID 971085 kern.notice] NOTICE:
   Publishing KRRP
   event EC_krrp ESC_KRRP_sess_send_done

• To see the most recent 100 syslog messages.

   CLI@nexenta> journal tail -c 100 messages

• To control the proliferation of extremely large log messages, you can manually trigger the rotation of the messages.

   CLI@nexenta> journal rotate messages
   This copies the current log to a different file and creates an empty log.

• To view an archived log file that was rotated, run the following commands.

   1. View the list of all archived files:

      CLI@nexenta> journal list -a

      NAME    SIZE  UPDATED  ARCHIVES
2. View the details of a specific archived log file:

   CLI@nexenta> journal show <name of the archived log file>

Example:

   CLI@nexenta> journal show rsf/rsfmon.7
Dial-Home and Call-Home Information

Unless the feature is disabled, NexentaStor nodes regularly upload configuration and log information back to Nexenta support over http. If http connections fail for some reason, NexentaStor can fall back to sending the information via email.

Note: For the email fallback mechanism to work, you will need to have configured a valid SMTP server on the NexentaStor node. See Configuring SMTP Email Service for more information on configuring the SMTP email service.

NexentaStor sends periodical email about the host to the Nexenta Support team using the default email address configured in the variable callHomeEmail. This variable is set by default to log.collector@logs.nexenta.com.

- **Verify the email address by listing the variable:**
  
  CLI@nexenta> config get all support.callHomeEmail

- **To configure the log.collector email address:**
  
  CLI@nexenta> config set support.callHomeEmail=log.collector@logs.nexenta.com
Bundle Services

A support bundle (SB) is an archive containing important system information for Nexenta support service (i.e. core dumps, system configuration files, system logs and so on). Support bundles can be managed even when the appliance management layer is not functioning, which makes bundles useful for troubleshooting purposes. This is referred to as “fail-safe mode” and it can be enforced for all bundle commands with the offline option.

Bundle file name contains the license, hostname and the bundle creation timestamp that helps to easily locate and identify which systems a bundle was generated from.

Creating a Support Bundle

You can create a bundle as a compressed archive on your system. A generated universally unique identifier (UUID) is displayed to reference the created bundle.

```
CLI@nexenta> bundle create
System response:
NEXENTA_SR-DEV-NS-201838594_2018-02-12T16-27-00-109Z
```

With the improved version of Core and crash dump management in NexentaStor, you have the following advantages:

- You can include the cores in the support bundle (SB), only if you need to, which means the cores are not included in the support bundle by default.
- You can also identify and select the cores associated with a specific problem to be included in the support bundle. This filtering of cores will speed up the upload of the support bundle. This also implies that the cores will not be removed from the NexentaStor appliance by default.

Identify the Core Files

```
CLI@nexenta> core list
FILE CREATED SIZE ALERT
vmdump.0 May 31 13:01:35 463.9M ccaf1761-f271-4436-b159-97493f9eb26
```

Include Core Files to Support Bundle

```
CLI@nexenta> bundle create -c | --cores = < Comma separated list of core files to include or "all" to include all of them>
```

Delete Core Files

You also have an option to remove duplicate cores without having to create a bundle with all of them.

```
CLI@nexenta> core delete <core file>
```
Verifying the Bundle

Ensure that the bundling has completed. The following command lists all the supported bundles.

CLI@nexenta> bundle list

<table>
<thead>
<tr>
<th>BUNDLEID</th>
<th>CREATED</th>
<th>SIZE</th>
<th>ACTION</th>
<th>DONE</th>
<th>UPLOADED</th>
<th>STATUS</th>
</tr>
</thead>
<tbody>
<tr>
<td>NEXENTA_SR-DEV-NS-201838594_2018-02-12T16-27-00-109Z</td>
<td>-</td>
<td>0K</td>
<td>create</td>
<td>3%</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

❖ To display the properties of the specified support bundle:

CLI@nexenta> bundle get all NEXENTA_SR-DEV-NS-201838594_2018-02-12T16-27-00-109Z

<table>
<thead>
<tr>
<th>NAME</th>
<th>PROPERTY</th>
<th>VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>NEXENTA_SR-DEV-NS-201838594_2018-02-12T16-27-00-109Z</td>
<td>action</td>
<td>create</td>
</tr>
<tr>
<td>NEXENTA_SR-DEV-NS-201838594_2018-02-12T16-27-00-109Z</td>
<td>bundleId</td>
<td></td>
</tr>
<tr>
<td>NEXENTA_SR-DEV-NS-201838594_2018-02-12T16-27-00-109Z</td>
<td>cores</td>
<td>-</td>
</tr>
<tr>
<td>NEXENTA_SR-DEV-NS-201838594_2018-02-12T16-27-00-109Z</td>
<td>done</td>
<td>100%</td>
</tr>
<tr>
<td>NEXENTA_SR-DEV-NS-201838594_2018-02-12T16-27-00-109Z</td>
<td>size</td>
<td>538.0K</td>
</tr>
<tr>
<td>NEXENTA_SR-DEV-NS-201838594_2018-02-12T16-27-00-109Z</td>
<td>status</td>
<td>ok</td>
</tr>
</tbody>
</table>

Download the Bundle Locally

In the absence of internet connection from NexentaStor node to the Support server and if you are unable to upload bundle to the Support server, you can download the support bundles locally directly from NexentaStor appliance by following these steps.

1. By default the download option is set to “false”. Verify it using the config support settings.

CLI@nexenta> config list support

<table>
<thead>
<tr>
<th>NAME</th>
<th>FLAGS</th>
<th>VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>support.callHomeEmail</td>
<td>--</td>
<td><a href="mailto:log.collector@logs.nexenta.com">log.collector@logs.nexenta.com</a></td>
</tr>
<tr>
<td>support.callHomeEnabled</td>
<td>--</td>
<td>true</td>
</tr>
<tr>
<td>support.downloadEnabled</td>
<td>--</td>
<td>false</td>
</tr>
<tr>
<td>support.emailEncryptionKey</td>
<td>--</td>
<td>cff255a4-1658-4c7c-88d4-86651255803e</td>
</tr>
<tr>
<td>support.grayLogEmail</td>
<td>--</td>
<td><a href="mailto:log.collector@logs.nexenta.com">log.collector@logs.nexenta.com</a></td>
</tr>
<tr>
<td>support.periodicBundle</td>
<td>--</td>
<td>true</td>
</tr>
<tr>
<td>support.sequentialS3Upload</td>
<td>--</td>
<td>false</td>
</tr>
<tr>
<td>support.uploadPassword</td>
<td>--</td>
<td>********</td>
</tr>
<tr>
<td>support.uploadUrl</td>
<td>--</td>
<td>s3://logcollector.nexenta.com/nstor/</td>
</tr>
</tbody>
</table>
2. If the download option was limited by setting to “false”, enable the bundle download option.
   
   CLI@nexenta> config set support.downloadEnabled=true

3. Obtain the bundle links.
   
   CLI@nexenta> bundle get download NEX-16770_SR-DEV-NS-201839906_2018-04-25T16-15-36-831Z -O basic
   
   
   
   
   
   

4. Download the bundles by opening a browser and copying them in the URL following https://<IP>:8443

   Example:
   
   https://192.167.1.55:8443/support/bundles/<bundleId>/download
   
   For the core files, follow this format:
   
   https://192.167.1.55:8443/support/bundles/<bundleId>/download/cores/<core file name>
   
   Example:
   

5. Save the file locally or in a location from where it can be uploaded to the support server.

Default Support Bundle Protocol and Settings

By default, support bundles are uploaded via S3 protocol to Nexenta servers. By default, S3 uploads use parallel upload for maximum throughput performance, and faster uploads. You can verify bundle upload settings by querying the support config options:

- To query the support bundle protocol:

   CLI@nexenta> config list support

   NAME                               FLAGS  VALUE

   CLI@nexenta> config list support

   NAME                               FLAGS  VALUE
support.periodicBundle --     true
support.callHomeEnabled --     true
support.uploadPassword --     ********
support.uploadUrl        --     s3://logcollector.nexenta.com/nstor/<guid>
support.sequentialS3Upload -- false

In the above system response you will notice that the sequentialS3Upload option is set to “false” because the default upload method is “parallel”.

Modify Default Settings for Slow Connections

If you are experiencing upload failures or have a slow network connection to Nexenta support servers, you should enable sequential S3 uploads (implicitly disabling parallel upload).

❖ To change to sequential uploads:

  CLI@nexenta> config set support.sequentialS3Upload=true

Upload Support Bundles to Nexenta’s https/ftp Server

While not recommended, legacy upload methods over https or ftp are still supported. These methods are slower and more prone to transfer issues than the default S3 uploads.

❖ To modify the support bundle protocol from the default S3 bucket to Nexenta’s https server:

  CLI@nexenta> config set support.uploadUrl = https://logcollector.nexenta.com/nstor/<guid>

  Type <guid> as a string at the end of the command. You must not input the real guid.

❖ To modify the support bundle protocol from the default S3 bucket to Nexenta’s ftp server:

  CLI@nexenta> config set support.uploadUrl = ftp://logcollector.nexenta.com/nstor/<guid>

  Type <guid> as a string at the end of the command. You must not input the real guid.

❖ To upload and to cancel the upload of a bundle:

  CLI@nexenta> bundle upload NEXENTA_SR-DEV-NS-201838594_2018-02-12T16-27-00-109Z
  CLI@nexenta> bundle cancel NEXENTA_SR-DEV-NS-201838594_2018-02-12T16-27-00-109Z

Upload Status

You may view the status of the upload by using the list command.

  CLI@nexenta> bundle list

  BUNDLEID                  CREATED        SIZE     ACTION  DONE  UPLOADED STATUS
  NEXENTA_SR-DEV-NS-201838594_2018-02-12T16-27-00-109Z Feb 12 19:27:41 538.0K create 100% - ok
Managing Boot Environments

NexentaStor provides advanced version management of system boot environments. A boot environment is what its name implies: the system bits and configuration that the node uses to boot and come up.

As an administrator, you can create any number of boot environment checkpoints: a point in time version of the boot OS configuration. You can control which boot environment to boot into. You can roll back to previous boot environments. Backup boot environments to an external NFS share. And restore boot environments from an external NFS share. By default, NexentaStor can store up to 20 boot environment checkpoints on its rpool.

Creating a Boot Environment Checkpoint

You can create a system boot environment checkpoint of the system configuration at a specific point in time.

- To create a boot environment checkpoint using the CLI:
  - Type:
    CLI@nexenta> software checkpoint <name of the checkpoint>

Rolling Back to a Boot Environment Checkpoint

You roll back to a NexentaStor boot environment checkpoint to restore the state of a system at a particular point in time.

- To roll back your system to a boot environment checkpoint, using the CLI:
  - Type:
    CLI@nexenta> software activate <name of the checkpoint>

Viewing Existing Boot Environment Checkpoints

You can view the current list of boot environment checkpoints and information about each one.

- To view the boot environment checkpoints, using the CLI:
  - Type:
    CLI@nexenta> software list

- To display specific boot environment checkpoints:
  - Type:
    CLI@nexenta> software list <name of the checkpoint>

Deleting a Boot Environment Checkpoint

You can delete a boot environment checkpoint, or multiple boot environment checkpoints, immediately to free space on the disk.
To destroy a boot environment checkpoint:

Type:

CLI@nexenta> software destroy <name of the checkpoint>

Implications of rolling back to a boot environment checkpoint:

When you roll back to a boot environment checkpoint, all the changes done after the creation of the checkpoint will be lost and you will be reverted back to the configuration state of the rolled-back checkpoint. The package version, log files, configuration files and so on will go back to the state as when the checkpoint was created. Also note that rolling back to a checkpoint involves a reboot of the appliance.

Backup and Restore of NexentaStor Boot Environment

Use this process to rebuild a NexentaStor node following total loss of boot devices, or a total loss and replacement of server hardware.

This section describes appliance’s functionality to back up and restore a NexentaStor appliance boot environment using software backup and software restore commands. A software backup creates a single backup file for a given NexentaStor boot environment and stores this backup file in the location specified in the system.backupDirectory configuration variable.

Software restore restores the configuration from the backup directory and makes it available as boot environment. This restored boot environment can then be activated to automatically re-apply IP / user / AD / Mappings / etc type information that was stored in the backup image.

Backup Boot Environment of a Single Node

To create a backup:

1. List existing boot environments and locate boot environment to backup.

CLI@nexenta> software list

```
NAME SPACE ACTIVENOW ACTIVEAFTERREBOOT CREATIONTIME
NexentaStor-5.2.1 506.3M no no Apr 18 12:58:19 2017
kstat_test 6.30G no no May 22 14:04:53 2017
kstat_test-backup 174K no no May 22 22:12:20 2017
kstat_test-backup 1.0M no no Jun 7 20:20:06 2017
NexentaStor-5.2.0 58.75G yes yes Dec 31 11:41:06 2017
```

2. On a remote NFS server, create an “open” NFS share accessible from the NexentaStor node.

Configure the ACL on the file system and add an Access Control Entry (ACE) with appropriate modify permissions on the file system to enable access from the NexentaStor node that will access the configured backups.
If the remote NFS server is a NexentaStor appliance, use the following commands to enable NFS share on the filesystem and to configure acl.

The example shown here uses nfs/backup as nfs share.

CLI@nfsserver> filesystem create nfs/backup
CLI@nfsserver> acl set A+user:nobody:modify_set:fd:allow nfs/backup
CLI@nfsserver> nfs share -o anon=nobody nfs/backup

3. Configure the remote target location in the 'system.backupDirectory' settings.

CLI@nexenta> config set system.backupDirectory=nfs://<IP address of the remote server>/nfs/backup

4. After adding the backup remote target location in 'system.backupDirectory' settings, run the backup command.

CLI@nexenta> software backup [-nyv] <version> [-b <backup>]

Example:

CLI@nexenta> software backup NexentaStor-5.2.0 -b Nexentabackupcurrentversion
Backup software version 'NexentaStor-5.2.0'? [y/N] y
Backing up "NexentaStor-5.2.0" as "Nexentabackupcurrentversion" ...
Backup created successfully.

5. List the backup to verify the size of the backup.

CLI@nexenta> software show-backup

<table>
<thead>
<tr>
<th>NAME</th>
<th>CREATED</th>
<th>SIZE</th>
</tr>
</thead>
</table>

**Note:** When using an explicit backup name, you should prefix it with the Node name of the BE you are backing up.

**Restore Boot Environment of a Single Node**

In the case of loss of all boot devices:

1. Install new boot devices.
2. Install NexentaStor and configure networking.
3. On the fixed appliance, list existing boot environments to make sure no collisions occur.

CLI@nexenta> software list

4. Configure the remote backup NFS share in the 'system.backupDirectory' settings.

CLI@nexenta> config set system.backupDirectory=nfs://<IP address>/nfs/backup

5. View existing Backups.

CLI@nexenta> software show-backup
6. Restore the backup on the newly installed appliance.
   Apply the "software restore" command for booting up the new appliance with the saved configuration that would automatically re-apply IP / user / AD / Mappings / etc type information that was stored in the backup directory.
   
   CLI@nexenta> software restore [-nyv] <version> -f <backup>
   Example:
   
   CLI@nexenta> software restore newname -f Nexentabackupcurrentversion
   
   Restore software version 'newname' from backup 'Nexentabackupcurrentversion' [y/N] y
   Software version restored successfully.

7. After the new version is restored, you will be prompted with a choice to activate the new restored BE version.

8. Type y to activate the new restored BE.
   
   Would you like to make software version 'newname' active [y/N]

9. Reboot the appliance.
   CLI@nexenta> reboot

In the case of total loss of server hardware:

1. Install a brand new appliance if the node is completely lost.
   Set up an appliance with identical Hardware, same server model, same NIC, same HBA, and so on.

2. Configure networking.

3. Display the system GUID using the following command.
   
   CLI@nexenta> config list | grep -irn guid
   
   Since a new server will have a different system GUID, you will need an updated NexentaStor license. Work with Nexenta support services to get an updated license matching the new server GUID.

4. Repeat Steps from 3 to 9 listed in the previous section.

5. Once you are booted in the restored boot environment, you will need to apply the new license with the updated server GUID. NexentaStor supports either online or offline license activation. The online activation process uses the activation key you received from Nexenta Systems.
   
   See NexentaStor 5.2 Installation Guide for more details on the steps to activate online and offline.
Backup Boot Environment of a HA Cluster

Steps to backup the BE in a clustered environment are the same as for a single node, applied on each node of a cluster. You can either store the backup of a node in an external NFS server or in the partner clustered node.

The following example shows a typical Active / Active 2-node (NodeA,NodeB) HA cluster configuration with the steps to backup the BE of NodeA. In this example, the partner node (NodeB) is used to store the BE backup of NodeA.

- **To backup the BE of NodeA:**
  
  In order to store the backup on NodeB, create a file system locally on NodeB, configure ACL on the file system, enable NFS share on the file system, and add an Access Control Entry (ACE) with appropriate modify permissions as the initial steps before configuring the backup directory.

1. List the current backups on NodeA and identify the BE to be backed up.
   
   CLI@NodeA> software list
   
<table>
<thead>
<tr>
<th>NAME</th>
<th>SPACE</th>
<th>ACTIVENOW</th>
<th>ACTIVEAFTERREBOOT</th>
<th>CREATIONTIME</th>
</tr>
</thead>
<tbody>
<tr>
<td>NexentaStor-5.2.0</td>
<td>1.54G</td>
<td>yes</td>
<td>yes</td>
<td>Sep 7 15:55:06</td>
</tr>
</tbody>
</table>

2. Create a file system on NodeB to store the backup.
   
   CLI@NodeB> filesystem create nfs/backup

3. Configure the ACL on the file system and add an Access Control Entry (ACE) with appropriate modify permissions on the file system to enable access from the other node (NodeB) that will access the configured backups.
   
   CLI@NodeB> acl set A+user:nobody:modify_set:fd:allow nfs/backup

4. Enable NFS sharing on the file system with root access for the other node NodeA.
   
   CLI@NodeB> nfs share -o anon=nobody nfs/backup

5. Configure the backup directory on NodeA to use the NFS share that was created on NodeB.
   
   CLI@NodeA> config set system.backupDirectory=nfs://<IP address of NodeB>/nfs/backup

6. After adding the backup remote target location in ‘system.backupDirectory’ settings, run the backup command.
   
   CLI@NodeA> software backup [-nyv] <version> [-b <backup>]

   Example:
   
   CLI@NodeA> software backup NexentaStor-5.2.0 -b NodeAbackupcurrentversion
   
   Backup software version ‘NexentaStor-5.2.0’? [y/N] y
   
   Backing up "NexentaStor-5.2.0" as "NodeAbackupcurrentversion" ...

---

**Note:** Any changes in cluster configuration should be done before backing up the boot environment of an appliance.

**Note:** When using an explicit backup name, you should prefix it with the Node name of the BE you are backing up.
Backup created successfully.

7. List the backup to verify the size of the backup.

```
CLI@NodeA> software show-backup
NAME CREATED SIZE
```

- To complete the cluster backup the BE of NodeB, repeat the above steps on NodeB with the shared file system on NodeA.

**Restore Boot Environment of a HA Cluster**

Restoring the BE in a clustered environment includes the steps discussed in the case of a single node environment and the additional steps discussed here.

**In the case of loss of all boot devices:**

1. Repeat Step 1 to Step 9 from the section “In the case of loss of all boot devices” under **Backup Boot Environment of a Single Node: Restore Boot Environment of a Single Node**.
2. Rebalance the pools to restore the original configuration.
   
   `CLI@NodeA> haservice move <service> <NodeB>`

**In the case of total loss of server hardware:**

1. Repeat Step 1 to Step 5 from the section “In the case of a total loss of a server hardware” under **Backup Boot Environment of a Single Node: Restore Boot Environment of a Single Node**.
2. In a clustered environment, you will need to activate the new license on both nodes of a cluster because the license file for an HA cluster references the GUIDs of both nodes. NexentaStor supports either online or offline license activation. The online activation process uses the activation key you received from Nexenta Systems.
   
   See NexentaStor 5.2 Installation Guide for more details on the steps to activate online and offline.
3. Once you are done restoring the backup on the newly installed appliance, verify the cluster is back on by running hacluster status.
   
   `CLI@nexenta> hacluster status`
4. If the cluster has not rejoined, re-join the cluster by restarting the HA cluster service on the new node.
   
   `CLI@nexenta> svc restart ha`
5. Rebalance the pools to restore the original configuration.
   
   `CLI@nexenta> haservice move <service> <NodeB>`

**Deleting Existing Backup**

1. To delete an existing backup: use `software delete-backup <name>`
Troubleshooting/Replacing Data Devices

Depending on your pool and system configuration, a device failure will automatically trigger a number of operations. A device failure will:

- generate an alert
- cause the pool and vdev containing that device to go to the DEGRADED state
- if the pool has an available hot spare, a hot spare device will automatically be activated. This will add the hot spare to the vdev where the failure happened and start a resilver operation to restore full redundancy in the vdev.
- cause the slot and enclosure for the failed device to automatically start blinking

Once the resilver operation on the hot spare completes, you should proceed to physically replace the failed device following the steps below. Note that the replacement should always match the physical characteristics of the device that is being replaced: same media type, same size and performance characteristics.

1. To identify only the failed devices, use the `-x` option in the following command:

   ```
 CLI@nexenta> disk list -x
 NAME LABEL SIZE MEDIATYPE STATE WHERE ENCLOSURELABEL USEDNAME
 c1t50000393B8C83E9Cd0 - 0.0K hdd RETIRED 50030480015a6b7f/15 -
   ```
   The device is failed if the state returns as RETIRED.

2. You can determine the status of an LED on a device by using the "disk indicators" command. To verify that the fail LED is indeed enabled on a device.

   ```
 CLI@nexenta> disk indicators c1t50000393B8C83E9Cd0
 NAME PROPERTY VALUE
 ident enabled yes
 fail enabled no
 ok2rm enabled no
   ```
   The "ident" property reports the status of the LED. A flashing LED on a device, returns "ident" "yes".

3. Optionally, you may need to enable the ident LED to physically highlight the failed device in its enclosure.

   ```
 CLI@nexenta> disk indicators --ident=ON c1t50000393B8C83E9Cd0
   ```

4. Optionally, you may need to enable the ident LED on the enclosure to physically locate it.

   ```
 CLI@nexenta> enclosure indicators --ident=ON <enclosure ID>
   ```
   Setting the ident to ON blinks the LED light for that device.

5. Physically replace the device: pull the failed device and put a replacement device in the same physical slot.
Note: the new device should be brand new, initialized or formatted, with no prior data on it. If the auto-replace option (see Section Smart-Sparing and Auto-Replace) is enabled, the system will automatically enable the new device and start a resilver operation on it. Once the resilver completes, any hot spare that previously had been activated will be returned as an available hot spare for the pool.

If for any reason the above sequence does not automatically complete (e.g. because the replacement device was taken from another pool), you may have to programmatically replace the failed device with the new one using the “pool replace <pool-name> <old-device> <new-device>” command as shown here:

```
CLI@nexenta> pool replace [-fnv] poola c1t50000393B8C83E9Cd0 <new-disk>
```

Example:

```
CLI@nexenta> pool replace [-fnv] poola c1t5000393B8C83E9Cd0
c1t5000CCA39ACF89DAd0
```

6. View the status of the various resilver operations mentioned above.

```
CLI@nexenta> pool status

pool tank
health DEGRADED
scan resilver repaired 0K with 0 errors in 0s on Sep 22 02:51:39
trim none requested
```

7. After replacing the device and once the resilver is complete, clear the device errors if there are any.

```
CLI@nexenta> pool clear <pool> [<disk>]
```

8. To automatically turn OFF LED blinking, mark the case as resolved.

```
CLI@nexenta> alert acquit <uuid>
```

_Clear Error Counters on Devices_

While troubleshooting device errors, it is useful to be able to reset all counters to zero to see if any errors come back. You can reset all the error counters on devices in a pool using the pool clear command. Use this “pool clear” command only if the errors do not indicate a potential failure and have not caused unrecoverable data errors in the pool.

- **View the status of the pool:**

  ```
 CLI@nexenta> pool status testpool
  ```

- **Clear the error counters on the device if there are any:**

  In order to use this pool clear command, your device must be accessible.

  ```
 CLI@nexenta> pool clear testpool <disk>
  ```

  If you do not specify the disk name, all device errors within the pool are cleared. If one or more devices are specified, only those errors associated with the specified devices are cleared.

  The following is a list of few device errors that can cleared using the above command:
• I/O errors
• checksum errors
• degraded state
• faulted state
• removed state
• unavailable state

Other Pool Management Commands

<table>
<thead>
<tr>
<th>Task</th>
<th>Related CLI Command</th>
</tr>
</thead>
<tbody>
<tr>
<td>Attaches a new disk to an existing pool disk. The existing disk</td>
<td>CLI@nexenta&gt; pool attach</td>
</tr>
<tr>
<td>cannot be part of a raidz configuration. If the disk is not</td>
<td>&lt;pool&gt; &lt;disk&gt; &lt;new-disk&gt;</td>
</tr>
<tr>
<td>currently part of a mirrored configuration, it automatically</td>
<td></td>
</tr>
<tr>
<td>transforms into a two-way mirror consisting of the disk and the</td>
<td></td>
</tr>
<tr>
<td>attached disk. If the disk is part of a two-way mirror, attaching</td>
<td></td>
</tr>
<tr>
<td>a new disk creates a three-way mirror, and so on. In either case,</td>
<td></td>
</tr>
<tr>
<td>the new disk begins to resilver immediately.</td>
<td></td>
</tr>
<tr>
<td>Removes (detaches) a single device from a mirrored vdev from any</td>
<td>CLI@nexenta&gt; pool detach</td>
</tr>
<tr>
<td>type of storage pool.</td>
<td>&lt;pool&gt; &lt;disk&gt;</td>
</tr>
<tr>
<td>Begins a scrub on a given pool. A scrub traverses the data of the</td>
<td>CLI@nexenta&gt; pool start-scrub</td>
</tr>
<tr>
<td>entire pool and verifies that all the blocks can be read.</td>
<td>and pool stop-scrub</td>
</tr>
<tr>
<td>Queries and enables drive indicators</td>
<td>CLI@nexenta&gt; disk indicators</td>
</tr>
<tr>
<td>Indicates that the drive can be removed.</td>
<td>CLI@nexenta&gt; disk indicators</td>
</tr>
<tr>
<td>Highlights if the drive is in a failed state.</td>
<td>CLI@nexenta&gt; disk indicators</td>
</tr>
<tr>
<td></td>
<td>-- ok2rm=ON &lt;diskID&gt;</td>
</tr>
<tr>
<td></td>
<td>-- fail=ON &lt;diskID&gt;</td>
</tr>
</tbody>
</table>

View the Resilver Status

The time to complete disk resilvering is based on the amount of data to be resilvered, speed of the disk and latency-critical operations on the pool. You can view the status of this resilvering process using the following command.

```
CLI@nexenta> pool status
pool tank
health ONLINE
```
Identify Number of Unused Bays in a Storage Enclosure

To list the number of empty slots in a storage enclosure:

```
CLI@nexenta> enclosure status
enclosure 5003048001abe77f
management this enclosure is managed via the default interface
model LSI SAS2X36 with **21** bays (**10** used)
capacity 17.00TB on 10 disk(s) (**10** HDD)
pools audit, tpool0
status ONLINE; no known issues
```

The above example shows **11** unused bays with the total of **21** bays.

Modify Resilver/Scrub Priority

By default, resilvering and scrub tasks are set to “normal” on the pools when they are created. These tasks run at a low priority to limit their impact on system services. You can modify the resilvering and scrub priority by using the tunable “zfs.scan.priority” globally on the system so the priority applies to all the pools on the system. Or you can use the tunable “resilverprio” and “scrubprio” specific to a pool.

While increasing the priority will reduce the scrub/resilver time, it adversely impacts latency-critical operations such as synchronous operations. You can prioritize or de-prioritize the resilvering process based on whether the I/O happening during the same window period as scrub/resilver is latency-critical or non-latency-critical.

The following table lists the various values you can set for this zfs.scan.priority, resilverprio and scrubprio tunables. See the sections below for information on using these tunables.

Table 4-1: Behavior of the Tunable at Various Values.

<table>
<thead>
<tr>
<th>Tunable Value</th>
<th>Behavior</th>
</tr>
</thead>
<tbody>
<tr>
<td>normal</td>
<td>This value is recommended to be used in case of a latency-critical user I/O. When zfs.scan.priority is set to “normal” latency-critical user I/O requests from services such as NFS or COMSTAR are prioritized over scrub/resilver I/O. This can cause a drop in scrub/resilver operation speed in case of latency-critical user I/O. Setting this tunable to “normal” prevents impact on User’s I/O.</td>
</tr>
<tr>
<td>high</td>
<td>This value is recommended in case of a non-latency-critical user I/O. Setting the tunable to &quot;high&quot; makes scrub/resilver priority higher than &quot;normal&quot;, so user I/O will not delay scrub/resilver much.</td>
</tr>
</tbody>
</table>
Setting Resilver or Scrub Priority Globally On the System

Resilvering task run at a low priority to limit their impact on system services. Use the attribute `zfs.scan.priority` to modify the priority of resilver and scrub task, where `zfs.scan.priority` represents the ZFS resilver/scrub I/O priority. This attribute has a global scope so the priority applies to all the pools on the system.

1. To modify the resilver/scrub priority globally on the system:
   - Set a value for the tunable based on your requirements.
   - `CLI@nexenta> config set zfs.scan.priority=high`
   - Verify the value you set.
   - `CLI@nexenta> config get all zfs.scan.priority

<table>
<thead>
<tr>
<th>NAME</th>
<th>PROPERTY</th>
<th>VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>zfs.scan.priority</td>
<td>description</td>
<td>ZFS resilver and scrub I/O priority</td>
</tr>
<tr>
<td>zfs.scan.priority</td>
<td>flags</td>
<td>--</td>
</tr>
<tr>
<td>zfs.scan.priority</td>
<td>name</td>
<td>zfs.scan.priority</td>
</tr>
<tr>
<td>zfs.scan.priority</td>
<td>schema</td>
<td>&lt;STRING, normal</td>
</tr>
<tr>
<td>zfs.scan.priority</td>
<td>value</td>
<td>high</td>
</tr>
</tbody>
</table>

Overriding the Global Value by Setting Resilver/Scrub Priority on Per Pool Basis

By default, resilvering and scrubprio task is set to “normal” on the pools when they are created. However, if you set a value other than “normal” globally on the system using the attribute “zfs.scan.priority” all the pools take the global value. But you can override the global value for any specific pool(s) and set it to a desired value based on your environment by following the steps below.

1. To modify the resilver priority per pool basis:
   - View the existing resilver priority.
   - `CLI@nexenta> pool get resilverprio <pool>`
   - `CLI@nexenta> pool get scrubprio <pool>`
   - Set a value on a pool using the attribute “resilverprio”/ “scrubprio”
   - `CLI@nexenta> pool set resilverprio=<normal|high|critical> <pool>`
   - `CLI@nexenta> pool set scrubprio=<normal|high|critical> <pool>`

Setting Resilver or Scrub Priority Globally On the System

<table>
<thead>
<tr>
<th>Tunable Value</th>
<th>Behavior</th>
</tr>
</thead>
<tbody>
<tr>
<td>critical</td>
<td>Setting the tunable to &quot;critical&quot;, roughly makes scrub/resilver I/O priority equal to user's latency-critical I/O.</td>
</tr>
</tbody>
</table>
Modifying “zfs.scan.priority” applies to the pools for which “resilverprio” and “scrubprio” have not been set explicitly.

Reverting the Rescan/Scrub Explicit Value Set on a Pool to the Global Value

You can cancel the explicit “resilverprio”, “scrubprio” value you set on a pool and revert it to the global value set on the system by using the “pool reset” command.

```
CLI@nexenta> pool reset resilverprio <pool>
CLI@nexenta> pool reset scrubprio <pool>
```

Measuring Network Performance

This section covers few scenarios when you may use “iperf” to test the quality of any IP interface. You can use this standard iperf tool on a NexentaStor 5 system or between two NexentaStor 5 hosts or between a NexentaStor appliance and a client.

The interfaces could be:
- HPR data interfaces
- Front-end service interfaces
- Management interfaces

A common use case for this type of network tests are HPR configurations, or generic troubleshooting. Before configuring HPR services between 2 sites and 2 clusters, you may use the steps here to get a sense of the bandwidth actually available between the 2 clusters, over the interfaces that will support HPR services. It is recommended to run this test before creating the HPR service.

To get information on the BandWidth available for a network between two hosts:

The following example shows the network throughput between two NexentaStor hosts.

Host 1: 10.3.53.109 (server)
Host 2: 10.3.53.179 (client)

1. Run iperf as server on the first host

```
CLI@host1> iperf -s

Server listening on 5201

```

2. Run iperf as client on the second host.

```
CLI@host2> iperf -c <ip of host1>
Example:
CLI@host2> iperf -c 10.3.53.109
Connecting to host 10.3.53.109, port 5201
```
3. Server listening to the client:

CLI@host1> iperf -s

------------------------------------------
Server listening on 5201
------------------------------------------
Accepted connection from 10.3.53.179, port 54259
[ 5] local 10.3.53.109 port 5201 connected to 10.3.53.179 port 55104
[ ID] Interval          Transfer     Bandwidth
[ 5]  0.00-1.00 sec 104 MBytes  874 Mbits/sec
[ 5]  1.00-2.00 sec 112 MBytes  937 Mbits/sec
[ 5]  2.00-3.00 sec 112 MBytes  938 Mbits/sec
[ 5]  3.00-4.00 sec 112 MBytes  939 Mbits/sec
[ 5]  4.00-5.00 sec 112 MBytes  938 Mbits/sec
[ 5]  5.00-6.00 sec 112 MBytes  936 Mbits/sec
[ 5]  6.00-7.00 sec 112 MBytes  937 Mbits/sec
[ 5]  7.00-8.00 sec 112 MBytes  937 Mbits/sec
[ 5]  8.00-9.00 sec 112 MBytes  937 Mbits/sec
[ 5]  9.00-10.00 sec 112 MBytes  938 Mbits/sec
[ 5] 10.00-10.00 sec 195 KBytes  945 Mbits/sec
------------------------------------------
[ ID] Interval          Transfer     Bandwidth
[ 5]  0.00-10.00 sec 0.00 Bytes  0.00 bits/sec sender
[ 5]  0.00-10.00 sec 1.08 GBytes  931 Mbits/sec receiver
------------------------------------------
Server listening on 5201
Diagnose Unsuccessful HA Service Start

- Check if the HA feature is enabled on the clustered nodes using the license show command. If not enabled, obtain an HA license token from sales@nexenta.com then run the following command:

  CLI@nexenta> license activate <Activation Token>

- Verify if both the nodes resolve to each other by running the following command on both the nodes.

  CLI@nexenta> net list host
  ADDRESS     HOSTNAME    ALIAS   PROTOCOL
  ::1         localhost   -       ipv6
  127.0.0.1   localhost   loghost ipv4
  10.3.53.109 nef06       -       ipv4
  10.3.53.110 nef07       -       ipv4

- If it is not mapped correctly, update the hosts on both the nodes to ensure that they resolve to each other. On the first node, run the following command.

  CLI@nexenta>  net create host [-nv] <IP address of the second node> <hostname of the second node>

- Run the above command on the second node to update the hosts.

- Verify that the new entry was added correctly using the following command:

  CLI@nexenta> net list host
  You should be able to see the IP address of each other.

- Check the state of the HA services. See NexentaStor HA CLI Configuration Guide for the list of possible service states.

  CLI@nexenta> haservice status - to see status of all HA services
  CLI@nexenta> haservice status <HA service name> - to see status of a specific HA service

- If the cluster has not rejoined, re-join the cluster by restarting the HA cluster service.

  CLI@nexenta> svc restart <service>

Visibility to Storage SAN

To review the details of the remote FC port connected to the specified local initiator and to get visibility into the FC SAN, use the following commands.

  CLI@nexenta> fcinitiator list
  NAME                  NODEWWN           CURRSPEED  STATE
  wwn.10000090fa498c2e  20000090fa498c2e  4Gb        online
  wwn.10000090fa498c2f  20000090fa498c2f  4Gb        online
Visibility to LUNs

To diagnose connectivity or path issues to JBODs and Devices (disks or SSDs), use the following commands.

CLI@nexenta> inventory lu

- To view the inventory of all logical paths to a single back end device:

  CLI@nexenta> inventory lu | grep -i <LUID>

  Example:

CLI@nexenta> inventory lu | grep -i 5000c50028b322ff
5000c50028b322ff disk c0t5000c50028d412b3d0 Emulex-42D0494-0
20 21000010867001d0 ONLINE
5000c50028b322ff disk c0t5000c50028d412b3d0 Emulex-42D0494-0
6 21000010867001d0 ONLINE
5000c50028b322ff disk c0t5000c50028d412b3d0 Emulex-42D0494-0
20 22000010867001d0 ONLINE
5000c50028b322ff disk c0t5000c50028d412b3d0 Emulex-42D0494-0
6 22000010867001d0 ONLINE

- To view the LUs exposed by a specific port:

 CLI@nexenta> inventory lu -p 22000010867001d0

 LUID DEVICETYPE LOGICALDEVICE HBA LUN
 PORTNAME STATE
500c04f2dbf1bc00 enclosure - Emulex-42D0494-0 56
22000010867001d0 ONLINE
5000c50028b37b1f disk c0t5000c50028b37b1fd0 Emulex-42D0494-0 54
22000010867001d0 ONLINE
5000c5002c43ba2b disk c0t5000c5002c43ba2bd0 Emulex-42D0494-0 52
22000010867001d0 ONLINE
5000c50028b9b863 disk c0t5000c50028b9b863d0 Emulex-42D0494-0 51
22000010867001d0 ONLINE
Save/Restore LUN Mappings from SMB/NFS Share

NexentaStor API provides the ability to save and restore LUN mappings information to or from a remote SMB or NFS share. This capability is critical for support teams that need to recover lost mappings following HA failovers.

The example shown here uses a SMB share to save the mapping information.

- **To save the LUN mapping information to a SMB share:**
  1. Verify the LUN mapping created on the node.
     
     CLI@nexenta> lunmapping list
     
     CLI@nexenta> lunmapping list
     
     ```
 ID VOLUME TARGETGROUP HOSTGROUP LUN
 0695AFC26B6540CF00000000 poola/sqlvg/sql-1 tg1 hg1 0
     ```
  2. Identify the SMB share where you want to save the LUN mappings to.
     
     CLI@nexenta> smb list
  3. Enable access to the detailed REST API documentation by following these steps.
     
     CLI@nexenta> config set rest.useSwagger=true (case-sensitive parameter)
  4. Point your browser to [https://<staticIPaddress>:8443/docs](https://<staticIPaddress>:8443/docs) using the static IP address and password you set up during the NexentaStor installation.
  5. Save the LUN mapping information on the intended SMB share by clicking on the “san/export” method and by providing the SMB share name in the filesystem parameter.

By doing the above, the LUN mapping information is exported as a json file to the specified SMB share.

- **To view the exported LUN mapping information:**
  6. List the available mapping export file by clicking the method “san/exportedConfigs”.

---

San

```
PUT san/export

Implementation Notes
Export current SAN configuration to a JSON file

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>filesystemName</td>
<td>tank/smb san lun info</td>
</tr>
</tbody>
</table>
```

---

---
To restore the LUN mapping from the configured SMB share:

7. Copy the name of SAN configuration to import that is listed under “san/exportedConfigs”.

8. To import the current SAN configuration from the saved JSON file, click on the “san/import” method.
9. Enter the filesystem and the configName you copied in the above step.
10. Click “Try it Out”.

Note:

This feature can be extended to:

• use a default local directory on rpool to store the mappings when no SMB/NFS share location is provided in the API call.
• export to a remote SMB/NFS share.

To remove an exported configuration, use /san/removeExportedConfigs method.

Using SNMP for Fault Management

NexentaStor supports monitoring and fault management via the Simple Network Management Protocol (SNMP) v2 and v3. You can use any third-party SNMP monitoring tool to monitor the NexentaStor SNMP traps.

About SNMP Traps

SNMP traps are warnings that NexentaStor snmpd generates for specified events. NexentaStor supports the following SNMP traps:

• Uptime traps
• Fault Management notifications

You may enable the following SNMP traps using the config set command:

• linkUpDown traps
• FMA traps
• SVC traps

The following is an example to show how to enable an SNMP trap:
CLI@nexenta> config set snmp.notifications.fma=all

Once you enable these, SNMP trap is generated on the NexentaStor appliance.

About SNMP Manager and SNMP Agent

To monitor the NexentaStor failure events using a third-party SNMP Manager, configure the SNMP Agent on the NexentaStor appliance.

- **SNMP manager** sends the SNMP requests to the SNMP agent and gathers information about devices connected to the network. Then the manager processes the gathered information and displays in human readable format such as tables, graphs, histograms and so on for an easier interpretation.

- **SNMP agent** is a server, configured on the NexentaStor appliance, that is used to monitor the devices over an IP network.

The SNMP agent listens to requests coming from the SNMP manager on the UDP port 161, while the SNMP manager listens to trap coming from the agent on the UDP port 162.

Configure SNMP Agent on NexentaStor

Configure the SNMP agent with the three community names: read-only, read-write and trap community string.

Table 4-2: SNMP Agent Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Read-only community string</td>
<td>The read-only community string parameter acts as a password and enables the access to the SNMP device. Default value is public. Most of the network equipment is shipped with a default setting public. You can leave the default setting or modify it according to security requirements of your network environment. For simplicity, leave the default value. For more information, see the documentation for your SNMP monitoring tool.</td>
</tr>
<tr>
<td>Read-write community string</td>
<td>The read-write community string parameter enables you to modify writable MIB objects. Default value is undefined. However, you may want to change this value to private or leave it unmodified according to your security requirements. Do not set this value to public. For simplicity, leave the default value. For more information, see the documentation for your SNMP monitoring tool.</td>
</tr>
<tr>
<td>Trap community string</td>
<td>The trap community string allows you to receive traps (asynchronous notifications) from the agent.</td>
</tr>
</tbody>
</table>

▶ To configure the SNMP agent:

CLI@nexenta> config set snmp.roCommunity = public
CLI@nexenta> config set snmp.rwCommunity = private
CLI@nexenta> config set snmp.trapCommunity = trapsCommunity

Now that you have configured the SNMP agent, you may configure some information about the agent that will be visible to SNMP clients.

### Set the Details of the SNMP Agent

Set the system contact, location, and the description of the SNMP agent so that these descriptions can be accessed through the configuration file.

**Table 4-3: Other SNMP Agent Parameters**

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>System location</td>
<td>Optional commentary describing the location of your SNMP monitoring tool.</td>
</tr>
<tr>
<td>System contact</td>
<td>Optional descriptive commentary that specifies contact information.</td>
</tr>
</tbody>
</table>

- **To set the details of the SNMP agent:**
  
  CLI@nexenta> config set snmp.contact = admin@example.com
  
  CLI@nexenta> config set snmp.location = SantaClara lab. 17 rack
  
  CLI@nexenta> config set snmp.systemDescription = Supermicro 2 jbod storage

- **To set up all the SNMP parameters at one stretch use the following command:**
  
  CLI@nexenta> config edit snmp

  This command takes you to the editor, where you can review and set up all the SNMP options.

### Enable SNMP Service

In order to use the SNMP service, you must enable the SNMP support.

CLI@nexenta> svc enable snmp

- **To verify if the service is online:**
  
  CLI@nexenta> svc list snmp
  
  NAME DESCRIPTION STATE
  
  snmp SNMP service online

Now that you have enabled the SNMP service, you can configure custom SNMP traps as shown in the example below.
Enable/Disable and Configure Custom SNMP Traps

Fault Management Alerts (FMA)

- To configure all the fault management alerts as SNMP traps, do the following:
  1. First verify if the fault management alerts are enabled:
     CLI@nexenta> svc get all -d snmp
  2. If FMA is not enabled and configured, use the following command to enable them.
     CLI@nexenta> config set snmp.notifications.fma=all

- To disable the notifications for the FMA trap:
  CLI@nexenta> config set snmp.notifications.fma=none

- To enable the notifications for some FMA events:
  CLI@nexenta> config set snmp.notifications.fma = problem-diagnosed
          problem-resolved
  The following is a list of possible FMA events:
  • problem-diagnosed
  • problem-updated
  • problem-repaired
  • problem-resolved
  To view the list of all possible events, use the command config edit.

LinkUpDown Traps

- To configure LinkUpDown traps using the CLI:
  CLI@nexenta> config set snmp.notifications.linkUpDown = true
  CLI@nexenta> config set snmp.notifications.linkUpDown = false
  In either case of link being Up or Down the event is emitted only after 60 seconds.

SVC Traps

- To configure SVC traps using the CLI:
  CLI@nexenta> config set snmp.notifications.svc=all

- To disable the notifications for the SVC traps:
  CLI@nexenta> config set snmp.notifications.svc=none
  The following is a list of possible SVC events:
  • to-maintenance
Now you can configure the host to which you want to forward the SNMP traps.

Configure SNMP Trap Handler

When NexentaStor receives an SNMP trap, it either logs or forwards the trap to the other host that is the SNMP monitoring tool. You can specify an IP address of the host to which you want to forward the SNMP traps.

To configure the recipient of an SNMP trap operation:

```
CLI@nexenta> config set snmp.trapSink = 10.90.0.1
```

Now the agent (NexentaStor appliance) should be able to send all the emitted SNMP traps to the specified hosts (10.90.0.1).

Import NexentaStor MIB Files

A Management Information Base (MIB) is a text file that describes the structure of management data of the device subsystem. A MIB file contains the hierarchy of Object Identifiers (OIDs). An OID contains a variable that SNMP can read and translate to human readable form.

When you monitor the NexentaStor performance using a third party SNMP manager, import the NexentaStor MIB files to the corresponding SNMP monitoring tool.

NexentaStor includes the following MIBs that can be executed with the SNMPWALK command:

<table>
<thead>
<tr>
<th>Nexenta MIBs (file name)</th>
<th>OID Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>NEXENTA-MIB</td>
<td>nexentaMIB</td>
<td>MIB that defines the Nexenta enterprise. The OID variant of this MIB is 1.3.6.1.4.1.40045</td>
</tr>
<tr>
<td>NEXENTA-NEF-ALERT-MIB</td>
<td>alert</td>
<td>MIB that provides access to all case events generated by the Nexenta Management Framework, covering issues such as:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• High CPU utilization events</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Port online/offline status events</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• High storage utilization events</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• High Performance Replication status events</td>
</tr>
<tr>
<td>NEXENTA-NEF-ATOMICSTATS-MIB</td>
<td>atomicStats</td>
<td>MIB that exposes information on systems registered to receive storage statistics streams</td>
</tr>
<tr>
<td>MIB Name</td>
<td>MIB Description</td>
<td></td>
</tr>
<tr>
<td>------------------</td>
<td>---------------------------------------------------------------------------------</td>
<td></td>
</tr>
<tr>
<td>NEXENTA-NEF-ZPOOL-MIB zpool</td>
<td>MIB that exposes the following information:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• <code>zpoolHealth</code></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• <code>zpoolSize</code></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• <code>zpoolAllocated</code></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• <code>zpoolFree</code></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• <code>zpoolCapacity</code></td>
<td></td>
</tr>
<tr>
<td>NEXENTA-ZFS-MIB nexentaZFSMIB</td>
<td>MIB exposing the following disk topology:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• <code>zpool statistics</code></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• <code>ZFS zpool health</code></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• <code>ZFS zpool failure mode</code></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• <code>ZFS ratio</code></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• <code>ARC statistics</code></td>
<td></td>
</tr>
</tbody>
</table>

**Note:**
The NexentaStor MIB files are available on the NexentaStor 5 download URL provided in the e-mail with your license information details.
See [Query SNMPv2c](#) for more information on using the above MIBs with the SNMPWALK command.
Query SNMPv2c

The command listed in this sections uses SNMP GETNEXT requests to query the zpool entity for a tree of information.

When you execute a SNMPWALK command, you may include an object identifier (OID). The OID that you specify will identify the portion of the object identifier space that should be searched using the GETNEXT requests. All nested variables in the subtree under the specified OID are queried and their values will be presented to you. Each variable name is given in the format specified in variables(5).

If you do not specify an OID argument, snmpwalk will search the subtree root including any MIB object values from other MIB modules, that are defined as lying within this subtree.

The following example uses nexentaMIB to return the pool status.

- To query SNMP:

  1. Type:

     root# > snmpwalk -v2c -c public 10.90.0.51 nexentaMIB

     NEXENTA-ZPOOL-MIB::zpoolName."rpool" = STRING: "rpool"
     NEXENTA-ZPOOL-MIB::zpoolName."tpool0" = STRING: "tpool0"
     NEXENTA-ZPOOL-MIB::zpoolHealth."rpool" = STRING: "ONLINE"
     NEXENTA-ZPOOL-MIB::zpoolHealth."tpool0" = STRING: "ONLINE"
     NEXENTA-ZPOOL-MIB::zpoolSize."rpool" = INTEGER: 19716
     NEXENTA-ZPOOL-MIB::zpoolSize."tpool0" = INTEGER: 1968
     NEXENTA-ZPOOL-MIB::zpoolAllocated."rpool" = INTEGER: 13505
     NEXENTA-ZPOOL-MIB::zpoolAllocated."tpool0" = INTEGER: 100
     NEXENTA-ZPOOL-MIB::zpoolFree."rpool" = INTEGER: 6210
     NEXENTA-ZPOOL-MIB::zpoolFree."tpool0" = INTEGER: 1867
     NEXENTA-ZPOOL-MIB::zpoolCapacity."rpool" = INTEGER: 68
     NEXENTA-ZPOOL-MIB::zpoolCapacity."tpool0" = INTEGER: 5
     NEXENTA-ATOMICSTATS-MIB::atomicStatsCarbonConnectionId.1 = INTEGER: 1
     NEXENTA-ATOMICSTATS-MIB::atomicStatsCarbonConnectionAddress.1 = STRING: "10.90.0.1:214"
     NEXENTA-ATOMICSTATS-MIB::atomicStatsCarbonConnectionState.1 = STRING: "recovering"
     NEXENTA-ATOMICSTATS-MIB::atomicStatsCarbonConnectionError.1 = STRING: "Error: connect ECONNREFUSED 10.90.0.1:214"

What Comes Next?

NexentaStor supports a variety of advanced storage features. Some of them are discussed in the next chapter.
Chapter 5

Advanced Configuration

This chapter covers the following topics:

- Configuring Additional REST Management IP Addresses
- Creating Named Administrator Accounts
- Creating a Pool with Multiple SLOG Device Pairs
- List of SMB Features Supported in Each SMB Version
- Sharing NFS and SMB Concurrently on a File System
- Using IPMP
- About NexentaStor as LDAP-Client
- Configuring NexentaStor as LDAP client using a Specific Profile
- Configuring NexentaStor as LDAP client Manually
- Verifying the LDAP Client Configuration
- Using LDAP Search
- Uninitializing NexentaStor LDAP Client
- Configuring Write-Back Cache

Configuring Additional REST Management IP Addresses

The IP interfaces that can be used to access NexentaStor management (via CLI and/or REST API) are controlled by the `system.managementAddress` configuration variable, optionally complemented by the `rest.managementAddress` configuration variable.

The following configurations are supported:

- If the `system.managementAddress` is set to 0.0.0.0, NexentaStor management can be accessed through all configured IP interfaces on the node using CLI and/or REST API. This applies whether or not the `rest.managementAddress` variable is configured.

- If the `system.managementAddress` is set to a specific IP address, NexentaStor management (CLI and REST API) will be available through that specific IP interface. If you need to be able to access NexentaStor management REST API through additional IP interfaces (for example to support OpenStack Cinder driver commands through data interfaces), you can optionally configure their IP addresses in the `rest.managementAddress` variable as described below.

Note that if IPa is configured in `system.managementAddress` and IPb and IPc are configured in `rest.managementAddress` NexentaStor management (REST API) will be available through all 3 IP interfaces: IPa, IPb and IPc. However, CLI will be available only through IPa.
To control the list of interfaces NEF can listen to:

1. List the IP addresses configured.
   
   ```
 CLI@nexenta> ip list
 NAME TYPE STATE ADDRESS
 e1000g0/v4 static ok 192.168.1.43/24
 e1000g0/v6 addrconf ok fe80::a00:27ff:fe22:329b/10
 e1000g1/v4 static ok 192.168.1.44/24
 e1000g2/v4 static ok 192.168.1.47/24
 e1000g3/v4 static ok 192.168.1.54/24
 lo0/v4 static ok 127.0.0.1/8
 lo0/v6 static ok ::1/128

 So the above example shows "192.168.1.43, 192.168.1.44, 192.168.1.47, 192.168.1.54" as the configured IP addresses.
   ```

2. Verify the management address is set to 0.0.0.0
   
   ```
 CLI@nexenta> config list system.managementAddress
 NAME FLAGS VALUE
 system.managementAddress -- 0.0.0.0
   ```

3. Verify the rest.managementAddress is currently empty.
   
   ```
 CLI@nexenta> config list rest.managementAddress
 NAME FLAGS VALUE
 rest.managementAddress -- []
   ```

4. Enable swagger if not already enabled.
   
   ```
 config set rest.useSwagger=true
   ```

5. Verify Swagger is enabled.
   
   ```
 CLI@nexenta> config list rest.useSwagger
 NAME FLAGS VALUE
 rest.useSwagger -- true
   ```

6. Make sure that you can login to Swagger on every configured IP “192.168.1.43, 192.168.1.44, 192.168.1.47, 192.168.1.54” listed under Step 1 by pointing your browser to https://<staticIPaddress>:8443/docs using the static IP addresses.
   
   ```
 https://192.168.1.43:8443/docs
 https://192.168.1.44:8443/docs
 https://192.168.1.47:8443/docs
 https://192.168.1.54:8443/docs
   ```

7. Set the rest.managementAddress to listen to any desired configured IPs in your environment.
This example shown here restricts the management address to two configured IPs:
192.168.1.43, 192.168.1.54.

CLI@nexenta> config edit rest.managementAddress
rest.managementAddress: ['192.168.1.43', '192.168.1.54']
Changes:
Variable 'rest.managementAddress' will be updated
Apply changes ...

8. **Verify the managementAddress you configured.**

CLI@nexenta> config list rest.managementAddress
NAME                      FLAGS  VALUE
rest.managementAddress    --     192.168.1.43
                          --     192.168.1.54

9. **Verify the management address is updated to 192.168.1.43:8443, 192.168.1.54:8443 using system status.**

CLI@nexenta> system status

10. **Set system.managementAddress to 192.168.1.47**

11. **Make sure that you can login to Swagger through the rest management address**
192.168.1.43, 192.168.1.54 configured as rest.managementAddress and through the address 192.168.1.47 configured as system.managementAddress. **Verify it by pointing your browser to**
https://192.168.1.43:8443/docs/
https://192.168.1.54:8443/docs/
https://192.168.1.47:8443/docs/

   - **To reset the rest.managementAddress at any point:**

     CLI@nexenta> config reset rest.managementAddress.

---

**Creating Named Administrator Accounts**

You can associate an existing user to one of the profiles listed here. A user can be only associated to a single profile and inherits the access privileges granted to the role. Named “appliance administrator” accounts enable the facility to “audit who made what changes”.

See [Managing Users](#) for information on creating a new user.

- **Default - “default”**

  By default a user will be created with this “default” profile and will have no access to the appliance using the CLI and API. However, you can configure file share permissions for these users. Once you create a user, you may enable API access/admin privileges later.

  See [Enable API Access to a New User](#) for information on adding API access to the new user you create.
See Create Named Admin Account with Admin Privileges to add full admin privileges to the new user you create.

- **API User - “API”**
  This user can manage the appliance using API only. These users do not have the privileges to access the appliance using the CLI.

- **Appliance administrator - “admin”**
  This user can manage the appliance using API and CLI.

- **API Read-Only User - “viewer”**
  This user has enough access to get the configuration information using the API.

### Setting Profile for a User Synchronously on Both Nodes

If the current node belongs to a cluster, you can set the profile for a user synchronously on both nodes using the “- C” option as shown in the following example.

```bash
CLI@nexenta> user set-profile -C testuser viewer
```

**Note:** In a clustered environment, changing user profile only on one node might cause inconsistency in system configuration.

### Enable API Access to a New User

API user can manage a NexentaStor appliance using API only.

1. **To enable API access to a newly created user:**
   ```bash
 CLI@nexenta> user set-profile <login> <profile>
   ```
   **Example:**
   ```bash
 CLI@nexenta> user set-profile testuser “API”
   ```
   This allows the “testuser” to manage the appliance using REST API.

2. **To view the added profile:**
   ```bash
 CLI@nexenta> user show-profile [-O <flags>] <login>
   ```
   **Example:**
   ```bash
 CLI@nexenta> user show-profile testuser
 NAME DESCRIPTION
 API Manage appliance via REST API
   ```

3. **Enable swagger.**
   ```bash
 CLI@nexenta> config set rest.useSwagger=true (case-sensitive parameter)
   ```

4. **Point your browser to** [https://<staticIPaddress>:8443/docs](https://<staticIPaddress>:8443/docs) using the static IP address and password you set up during the NexentaStor installation.

5. **Login to try out the APIs using the account you added as API user.**
Enable Read-Only Access to the API

1. To add “API Read-Only” privileges to a user.
   
   CLI@nexenta> user set-profile testuser viewer

2. To view the added profile.
   
   CLI@nexenta> user show-profile testuser

   NAME     DESCRIPTION
   viewer   Read only access to the REST API

Create Named Admin Account with Admin Privileges

To enable a named user with full “admin” privileges on the appliance, identical to the default “admin” account, do the following.

1. To add “admin” privileges to a user.
   
   CLI@nexenta> user set-profile testuser “admin”

2. To view the added profile.
   
   CLI@nexenta> user show-profile testuser

   NAME     DESCRIPTION
   admin    Administrative appliance management via CLI and API

Also see the following commands to manage users and user groups:

   CLI@nexenta> user –h
   CLI@nexenta> group –h

Creating a Pool with Multiple SLOG Device Pairs

On high-performance or large systems, use the following command to create a pool with multiple pairs of SLOG devices. This setting is recommended for high synchronous write workloads.

The following are examples of creating a pool named “demo” with different redundancies.

- Creating a simple stripe (non-redundant) Pool with non-mirror SLOG devices

   CLI@nexenta> pool create -f demo 5f8db882fe1a7e00:1-5 log 5f8db882fe1a7e00:21-22 5f8db882ff6fe600:21-22

- Creating a Mirrored Pool with non-mirror SLOG devices

   CLI@nexenta> pool create -f demo mirror 5f8db882fe1a7e00:1-4 log 5f8db882fe1a7e00:21-22 5f8db882ff6fe600:21-22

- Creating a Mirrored Pool with mirror-2 SLOG devices

   CLI@nexenta> pool create -f demo mirror 5f8db882fe1a7e00:1-4 log mirror-2 5f8db882fe1a7e00:21-22
• Creating a Mirrored Pool with mirror-4 SLOG devices
  CLI@nexenta> pool create -f demo mirror 5f8db882fe1a7e00:1-4 log mirror-4 5f8db882fe1a7e00:21-22 5f8db882ff6fe600:21-22

• Creating a RAIDZ-1 Pool with mirror-2 SLOG devices
  CLI@nexenta> pool create -f demo raidz-1 5f8db882fe1a7e00:1-6 log mirror-2 5f8db882fe1a7e00:21-22

• Creating a Pool with two mirror-2 SLOGs
  CLI@nexenta> pool create -f demo mirror 5f8db882fe1a7e00:1-4 log mirror-2 5f8db882fe1a7e00:21-22 5f8db882ff6fe600:21-22

Verifying Pool Creation

CLI@nexenta> pool status demo

List of SMB Features Supported in Each SMB Version

Supported SMB protocols in NexentaStor

- To view the list of supported SMB protocol in NexentaStor:
  CLI@nexenta> svc get supportedProtocols smb
  Name         Value
  supportedProtocols ['1', '2.1', '3.0', '3.02']

Supported SMB features in each smb version

<table>
<thead>
<tr>
<th>Feature</th>
<th>Supported</th>
</tr>
</thead>
<tbody>
<tr>
<td>Legacy SMB 1 Protocol</td>
<td>Yes</td>
</tr>
<tr>
<td>SMB 2.1 Protocol</td>
<td>Yes</td>
</tr>
<tr>
<td>• Compound Operations</td>
<td>Yes</td>
</tr>
<tr>
<td>• Asynchronous Operations</td>
<td>Yes</td>
</tr>
<tr>
<td>• Lease oplocks</td>
<td>Yes</td>
</tr>
<tr>
<td>• Large MTU</td>
<td>Yes</td>
</tr>
<tr>
<td>• Durable handles</td>
<td>Yes</td>
</tr>
<tr>
<td>• Branch cache</td>
<td>No</td>
</tr>
<tr>
<td>SMB 3.0 Protocol</td>
<td>Yes</td>
</tr>
<tr>
<td>• Transparent Failover / Continuous Available Shares</td>
<td>Yes (on “CA” shares)</td>
</tr>
<tr>
<td>• Persistent Handles</td>
<td>Yes</td>
</tr>
<tr>
<td>Feature</td>
<td>Supported</td>
</tr>
<tr>
<td>----------------------------------------------</td>
<td>----------------------------</td>
</tr>
<tr>
<td>• Witness</td>
<td>No</td>
</tr>
<tr>
<td>• Multichannel</td>
<td>No</td>
</tr>
<tr>
<td>• SMB Direct (SMB 3 over RDMA)</td>
<td>No</td>
</tr>
<tr>
<td>• Directory Leasing</td>
<td>No</td>
</tr>
<tr>
<td>• Branch Cache v2</td>
<td>No</td>
</tr>
<tr>
<td>• SMB Encryption (AES-128-CCM)</td>
<td>Yes</td>
</tr>
<tr>
<td>• VSS on SMB</td>
<td>Partial: ability to expose snaps, but no support to create or destroy snaps</td>
</tr>
<tr>
<td>SMB 3.02 Protocol</td>
<td>Yes</td>
</tr>
<tr>
<td>• Enhanced SMB Direct</td>
<td>No</td>
</tr>
<tr>
<td>• SMB Scale-Out File Server</td>
<td>No</td>
</tr>
<tr>
<td>• Automated rebalancing in SOFS</td>
<td>No</td>
</tr>
<tr>
<td>• Read/Write Cache Bypass</td>
<td>Yes</td>
</tr>
</tbody>
</table>
Managing File Access Audit

NexentaStor provides you the facility to audit any failed access or successful access of a file over SMB. When you enable the audit option for a file system, you will be provided with information such as User ID and/or SID, and client IP, file path, and the requested access, etc.

**Note:** File access auditing works only on SMB2 and greater.

Configure File Access Audit

1. Set the SMB server min protocol version to 2.1.
   
   ```
 CLI@nexenta> svc set minProtocolVersion=2.1 smb
   ```

2. Set user default preselection flags based on your requirement. A good starting point is to audit System Access Control List (SACLs) class events:
   
   ```
 CLI@nexenta> auditconfig -setflags sa
 CLI@nexenta> auditconfig -setnaflags sa

 Domain users that do not get mapped to non-ephemeral UIDs are audited based on naflags.

 To audit only failed SACLs:

   ```
   CLI@nexenta> auditconfig -setflags -sa
   ```

 To audit only successful SACLs:

   ```
   CLI@nexenta> auditconfig -setflags +sa
   ```

 To audit file access and logins:

   ```
   CLI@nexenta> auditconfig -setflags sa,lo
   CLI@nexenta> auditconfig -setnaflags sa,lo
   ```

3. Verify the auditing configuration.

   ```
   CLI@nexenta> auditconfig -getflags
   active user default audit flags = sa,lo(0x2001000,0x2001000)
   configured user default audit flags = sa,lo(0x2001000,0x2001000)
   CLI@nexenta> auditconfig -getnaflags
   active non-attributable audit flags = sa,lo(0x2001000,0x2001000)
   configured non-attributable audit flags = sa,lo(0x2001000,0x2001000)
   ```

4. Enable the auditing feature.

   ```
   CLI@nexenta> config set audit.enabled=true
   ```

 Using the “audit.logRetentionDays” tunable you can change/set the number of days worth of log to retain. By default the audit.logRetentionDays is set to 7.

5. Validate the audit service configuration.

   ```
   CLI@nexenta> audit validate -v
   Validating audit service configuration
   ```
configuration ok

6. Restart the SMB service to force users to re-authenticate and pick up the flags.

 CLI@nexenta> svc restart smb

7. Set the basic audit policy on the SMB share that needs auditing from Windows client.

 See https://docs.microsoft.com/en-us/windows/security/threat-protection/auditing/apply-a-basic-audit-policy-on-a-file-or-folder to set the audit policy.

 Note: To avoid cluttering in the audit trail, the recommendation is to not audit successful access of "ReadAttributes" on files and directories, and "ListDirectory" on directories.

 The following screenshot is an example shown from Windows 10 client.

8. Verify the audit ACE in the file system you set.

 CLI@nexenta> acl list tank/smbaudittest

<table>
<thead>
<tr>
<th>INDEX</th>
<th>TYPE</th>
<th>PRINCIPAL</th>
<th>PERMISSIONS</th>
<th>FLAGS</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>allow</td>
<td>owner@</td>
<td>rwxp-DaARWcCos</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>allow</td>
<td>group@</td>
<td>------a-R-c--s</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>allow</td>
<td>everyone@</td>
<td>------a-R-c--s</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>audit</td>
<td>everyone@</td>
<td>rwxpDaARWcCos</td>
<td>fd--SF-</td>
</tr>
</tbody>
</table>

 The flag S represents auditing successful access and F Failed access.

Retrieve the Complete Audit Trail

9. List the existing audit trail files.
CLI@nexenta> auditreduce list

<table>
<thead>
<tr>
<th>NAME</th>
<th>SIZE</th>
<th>UPDATED</th>
</tr>
</thead>
<tbody>
<tr>
<td>20181017174400.not_terminated.smc-53-109</td>
<td>0.1K</td>
<td>Wed Oct 17 23:14:00 2018</td>
</tr>
</tbody>
</table>

Export the Audit Trail

10. Export the resulting info to the console using “stdout”, or to a target file system on a data pool using “file”.

While exporting, you have an option to apply filters to the export of audit records. See man page for auditreduce or type auditreduce stdout --help for record selection options.

- To export the contents of an audit trail file to the console:

 CLI@nexenta> auditreduce stdout

- To export the audit trail to the local file system on a data pool using “auditreduce file”:

 1. Add an ACE on the local file system giving modify permissions to ‘Administrators’.

 CLI@nexenta> acl set
 A+groupsid:Administrators@BUILTIN:modify_set:fd:allow pool/fstest

 2. Specify the file system to which the audit file should be exported.

 CLI@nexenta> auditreduce file <file>

 Example:

 CLI@nexenta> auditreduce file -A -x /pool/fstest/auditoutput

 The above example dumps all audit records to the dataset (/pool/fstest) in xml format.

Sharing NFS and SMB Concurrently on a File System

NexentaStor supports concurrent sharing of any file system over NFS and SMB while maintaining tight control on end-user authentication and access permissions. This is managed through the NexentaStor identity mapping service which can be configured to:

- Use a directory service, such as Active Directory (AD) with Identity Management for UNIX (IDMU) schema, or RFC 2307 compliant ID mapping attributes.

- Use identity mapping rules locally configured on the NexentaStor nodes

If configured to use a directory service, the identity mapping service will first try to use information stored in user or group objects in the Active Directory (AD) and/or the native LDAP directory service. If no directory based mapping information is available, NexentaStor will process locally configured identity mapping rules.

This locally configured mapping rules use the name-based mappings that are manually set up by the system administrator. If no name-based mapping is found in the locally configured identity mapping rules, then the SID is mapped to a dynamically allocated ephemeral ID. This allocation uses the next available UID or GID.

Identity mapping rules locally configured on NexentaStor nodes support user to user, group to group, group to user, and user to group mappings. These mappings persist across reboots and build on the name details stored in user or group objects in the Active Directory (AD), to establish name equivalence between Windows
users and groups and their counterparts in the UNIX name service. For instance, an AD object for a particular Windows user or group can be extended to include the corresponding NexentaStor local user or group name. Conversely, the native LDAP object for a particular NexentaStor local user or group can be augmented to include the corresponding Windows user or group name.

To facilitate the process of mapping Active Directory users to NexentaStor users, you can map a Windows group to a single NexentaStor user. If you create a group to group mapping, you must first create and map all users from a Windows group on the NexentaStor appliance. Then, you must create a NexentaStor group, include all the users to that group, and then create a group to group mapping.

The identity mapping service is managed using the idmap command on the NexentaStor CLI.

Managing Local Name-Based Rules

By default, name-based mappings are bidirectional. You can use the -d option to create a unidirectional mapping from a Windows user/group to a local one.

- **To verify that the IDMAP system service is enabled, see the commands below.**

  ```
  CLI@nexenta> svc list idmap
  NAME   DESCRIPTION    STATE
  idmap  idmap service  online
  ```

- **To map the Windows “admin” user to local user “root”**

  ```
  CLI@nexenta> idmap create [-gudnhv] <name> <identity>
  Example:
  CLI@nexenta> idmap create root admin@my.domain
  ```

- **To create a mapping for a Windows group “testers” to local group “qa-testers”:**

  ```
  CLI@nexenta> idmap create -g <name> <identity>
  Example:
  CLI@nexenta> idmap create -g qa-testers testers@my.domain
  ```

Options:

- `<name>` Local name
- `<identity>` fully qualified domain name
- `-g,--group` Group mapping
- `-u,--user` User mapping (default mapping type)
- `-d,--unidirectional` Unidirectional mapping

- **To create a wildcard mapping to map all users in the Windows domain to users of the same name in the Unix domain, or to map all AD groups in the Windows domain to Unix groups of the same name:**

  ```
  CLI@nexenta> idmap create 'winuser:*@example.com' 'unixuser:*'
  CLI@nexenta> idmap create 'wingroup:*@example.com' 'unixgroup:*'
  ```
In the example above, the first command would map the Windows user called bill@example.com to the Unix user bill. Similarly, the second command would map the Windows group called eng@example.com to the Unix group eng.

- To view information about the available name-based mapping rules, including Windows user/group name, local name, identity type and direction:

 CLI@nexenta> idmap list <identity>

 Example:

 CLI@nexenta> idmap list testers@mydomain

 DOMAINIDENTITY IDENTITYTYPE ISSTATIC ISUNIDIRECTIONAL LOCALNAME
 testers@mydomain group yes no qa-testers

- To delete a mapping for a Windows user:

 CLI@nexenta> idmap delete <identity>

 Example:

 CLI@nexenta> idmap delete testers@my.domain

- To view all established mappings:

 CLI@nexenta> idmap dump -v

 DOMAIN ENTITY LOCAL ENTITY
 gsid:S-1-5-32-544 == gid:2147483650
 method: Ephemeral
 or

- To view a mapping of a particular identity, provide the name to show the mappings for:

 1. When executing this command, provide the target type for the mapping. If not provided, non-diagonal mapping will be displayed.

 CLI@nexenta> idmap show [-cv] [-O <flags>] <name> [type]

 Example:

 CLI@nexenta> idmap show qa-testers group

- To view what a specific UID is mapped to:

 CLI@nexenta> idmap show uid:2147483651 winuser
 uid:2147483651 -> winuser:testuser@blue.ma.nexenta.com

 CLI@nexenta> idmap show uid:2147483651 usid
 uid:2147483651 -> usid:S-1-5-21-3253249640-3922491939-2078867842-110

- To view mapping of GID to Windows group name and GSID:

 CLI@nexenta> idmap show gid:2147483655 wingroup
 gid:2147483655 -> wingroup:testgrp@blue.ma.nexenta.com

 CLI@nexenta> # idmap show gid:2147483655 gsid
 gid:2147483655 -> gsid:S-1-5-21-3253249640-3922491939-2078867842-110
To view mapping of an UNIX user name to Windows user name and USID:

CLI@nexenta> idmap show unixuser:test winuser
unixuser:test -> usid:S-1-5-21-1276953488-4197781916-3843120610-1102
CLI@nexenta> idmap show unixuser:test usid
unixuser:test -> usid:S-1-5-21-1276953488-4197781916-3843120610-1102

To flush the identity mapping cache so that future mapping requests will be fully processed based on the current rules and directory information:

CLI@nexenta> idmap flush [-nyva]

Configuring Directory Based Identity Mapping

Configuring NexentaStor to use IDMU will support clients of both AD and NIS/NFS environments by mapping their Microsoft Windows and UNIX identities. When you use NexentaStor’s IDMU feature, the service uses the UNIX attributes to establish mappings between Windows and UNIX identities. Once you establish a mapping between Windows and UNIX environments, files can be shared simultaneously with consistent access permissions between both Windows and UNIX environments. This mapping allows the network clients to access NFS/CIFS shares using both CIFS and NFS protocols.

Prerequisites

To configure NexentaStor to use IDMU ensure that your environment meets the following prerequisites.

- Ensure that you have a Windows Active Directory (AD) domain.
- An AD user account and password to use for LDAP "proxy" access.
 Set the user password to never expire.
 User must be a member of "Domain Users" (by default, it is).
- Ensure that NexentaStor has proper network configuration and is able to route to NFS and Active Directory servers.
- Know the root passwords of the NFS servers and clients.
- Know the username and password for Windows domain account with privileges to lookup users and group in the domain.
- Know the keys for any Network Time Protocol (NTP) server.
- Configure NexentaStor appliance to access AD.
- Set up DNS Services
- Set up NTP Services
- Join the AD domain
- Configure NexentaStor appliance to access NFS directory server.
- Configure the NIS clients to access the Windows Server Identity Management for UNIX.
Proposed Configuration

To configure NexentaStor to use IDMU, follow the proposed configuration listed here.

- Use the IP address of the LDAP server when configuring the LDAP client using ldapclient command.
- Ensure that the LDAP servers have their first name listed as the FQDN in the /etc/inet/hosts file so that IP-to-name lookup will return the FQDN for each LDAP server.
- Nexenta recommends to use proxy as the credential level and simple as the authentication method when configuring the LDAP client.
- We do not recommend using self as the credentialLevel for the ldapclient configuration step.

If you configure LDAP client using self as the credentialLevel and sasl/gssapi as the authenticationMethod, you must use Kerberos for authentication and all the services asking for name service lookup must have Kerberos credentials.

Steps to Configure

- **Verify that the IDMAP system service is enabled:**

 CLI@nexenta> svc list idmap

 NAME DESCRIPTION STATE
 idmap idmap service online

- **Enable Identity Management for Unix (IDMU):**

 CLI@nexenta> svc set directoryBasedMapping=idmu idmap

 CLI@nexenta> svc get all idmap

 Name Value
 directoryBasedMapping idmu

- **Configure the LDAP client:**

 The example here uses the following components:

 <AD Servers> 10.3.64.20, 10.3.64.21
 <AD Domain> w2012-idmu.corp
 Proxy User ldap-proxy
 Proxy P/W Nexenta123

 CLI@nexenta> ldapclient [-v | -q] manual credentialLevel=proxy \
 authenticationMethod=simple \
 proxyDN="cn=ldap-proxy,cn=Users,dc=w2012-idmu,dc=corp" \
 proxyPassword=Nexenta123 \
 defaultSearchBase=dc=w2012-idmu,dc=corp \
 domainName=w2012-idmu.corp \
 defaultServerList=10.3.64.20,10.3.64.21 \
 \

 Copyright © 2019 Nexenta Systems, ALL RIGHTS RESERVED
 www.nexenta.com
attributeMap=passwd:gecos=cn \
attributeMap=passwd:homedirectory=unixHomeDirectory \
objectClassMap=group:posixGroup=group \
objectClassMap=passwd:posixAccount=user \
objectClassMap=shadow:shadowAccount=user \
\nserviceSearchDescriptor='passwd:cn=users,dc=w2012-idmu,dc=corp?sub'\nserviceSearchDescriptor='group:cn=users,dc=w2012-idmu,dc=corp?sub'

To Unconfigure IDMU:

CLI@nexenta> svc set directoryBasedMapping=none idmap

To Uninitialize LDAP client:

CLI@nexenta> ldapclient unconfigure

Using IPMP

Using IP network multipathing (IPMP), you can combine multiple NICs into an IPMP group. These IPMP links can be connected to different switches to increase availability and performance of the network. You can use IPMP on top of link aggregation. IP network multipathing provides load balancing, availability, and performance in the systems with multiple interfaces connecting to one local area network (LAN).

When creating an IPMP interface, provide the primary network interfaces that will be part of the IPMP group and also the standby interfaces that can be used as fallback for the IPMP group to provide network redundancy.

Configure IPMP group with DHCP

1. Create an IPMP interface.

 CLI@nexenta> ipmp create <IPMP group name>

 Example:

 CLI@nexenta> ipmp create group1

2. Verify the newly created group.

 CLI@nexenta> ipmp list

 System response:

 NAME STATE LINKS FDT
 group1 failed - 0

3. Create the underlying interfaces, if you haven’t configured them yet. The following example creates two underlying interfaces: e1000g1, e1000g2. When creating the underlying interfaces, assign dynamic IP addresses to them.

 CLI@nexenta> ip create dhcp <interface>
Example:
CLI@nexenta> ip create dhcp e1000g1/v4
CLI@nexenta> ip create dhcp e1000g2/v4

4. **View the NIC configuration to verify the newly added interface.**

CLI@nexenta> ip list

System response:

<table>
<thead>
<tr>
<th>NAME</th>
<th>TYPE</th>
<th>STATE</th>
<th>ADDRESS</th>
</tr>
</thead>
<tbody>
<tr>
<td>e1000g1/v4</td>
<td>dhcp</td>
<td>ok</td>
<td>10.3.54.227/22</td>
</tr>
<tr>
<td>e1000g1/v6</td>
<td>addrconf</td>
<td>ok</td>
<td>fe80::20c:29ff:fece:82a6/10</td>
</tr>
<tr>
<td>e1000g2/v4</td>
<td>dhcp</td>
<td>ok</td>
<td>10.3.54.217/22</td>
</tr>
<tr>
<td>e1000g2/v6</td>
<td>addrconf</td>
<td>ok</td>
<td>fe80::20c:29ff:fece:82a6/10</td>
</tr>
</tbody>
</table>

5. **Add the newly created underlying IP interfaces to the IPMP group. Also add the primary interface to the IPMP group along with the stand-by interfaces for network redundancy.**

CLI@nexenta> ipmp add-member <name> link

Example:
CLI@nexenta> ipmp add-member group1 e1000g0
CLI@nexenta> ipmp add-member group1 e1000g1
CLI@nexenta> ipmp add-member group1 e1000g2

6. **Assign a DHCP IP address to the created IPMP group.**

CLI@nexenta> ip create dhcp group1/v4

7. **Now verify the newly created group.**

CLI@nexenta> ipmp list

System response:

<table>
<thead>
<tr>
<th>NAME</th>
<th>STATE</th>
<th>LINKS</th>
<th>MTU</th>
<th>FDT</th>
</tr>
</thead>
<tbody>
<tr>
<td>group1</td>
<td>ok</td>
<td>e1000g0,</td>
<td>1500</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>e1000g1,</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>e1000g2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

8. **Create the network route manually.**

CLI@nexenta> route create [-nv] <destination> <gateway>

Example:
CLI@nexenta> route create default 10.3.10.1
About NexentaStor as LDAP-Client

You can integrate NexentaStor with Lightweight Directory Access Protocol (LDAP) since it supports Users and groups defined in LDAP-based directory service along with local Users and groups. You must set up NexentaStor as LDAP client to authenticate users logging in with their LDAP credentials. When you configure NexentaStor as LDAP client, NexentaStor provides a method for accessing and maintaining distributed directory information such as a list of users contained in the LDAP server. You can also manage ACL through LDAP configuration.

To configure NexentaStor as LDAP client, you must have configured an LDAP server in your environment.

You have two ways of configuring NexentaStor as LDAP client:

- **Using a pre-defined profile supported by NexentaStor**

 You can configure NexentaStor as LDAP client using customized profile supported by NexentaStor. When you use these profiles, NexentaStor LDAP client will use the predefined set of LDAP attributes from the profile you select to determine the configuration of the LDAP client. Use the pre-defined profiles for easy configuration of LDAP client and to propagate the changes to LDAP clients.

 See: Configuring NexentaStor as LDAP client using a Specific Profile

- **Manually**

 Use the steps mentioned in this section if you want to configure NexentaStor as LDAP client manually. In this case, you configure the profile on the client by defining all the attributes from the command line. If you do not specify the attributes, default values will be assigned to them. When you configure the service manually, you must point the appliance to at least one LDAP server using the `defaultServerList` attribute or using the `preferredServerList` attribute.

 See: Configuring NexentaStor as LDAP client Manually

Advantages of Integrating NexentaStor with LDAP

NexentaStor LDAP integration provides the following advantages:

- User’s connection and authentication control
- Option to use User authentication in NFS-based environment
- Usage of ACL across heterogenous file services instead of POSIX permissions and attributes
- Usage of SSL

Supported LDAP Servers

NexentaStor supports the following LDAP servers.

- MS AD
- OpenLDAP

Note: In a clustered environment, you must join the AD domain on both nodes manually.
Configuring NexentaStor as LDAP client using a Specific Profile

You must set up NexentaStor as LDAP client to be able to use LDAP services.

To configure NexentaStor as LDAP client using a specific profile supported by NexentaStor:

1. Type:
 CLI@nexenta> ldapclient configure <profile>

 NexentaStor supports the following two profiles:

 - **ms**: Microsoft Active Directory LDAP client
 - **generic**: generic LDAP client

 This command lets you to initialize NexentaStor as LDAP client interactively based on the predefined sets of LDAP attributes from the profile you select. The default values for the entries are listed within the square brackets. The default values will be selected if you skip the interactive questions.

 Example:

 CLI@nexenta> ldapclient configure ms

 Default DN: DC=NStordemo,DC=corp

 LDAP servers: 10.3.76.181

 Authentication method (none,simple,sasl/CRAM-MD5,sasl/DIGEST-MD5,tls:simple) [simple]:

 Credential level [proxy]:

 Proxy DN: CN=Administrator,CN=Users,DC=NStordemo,DC=corp

 Proxy password:

 Service search descriptors:

 - serviceSearchDescriptor=passwd:CN=Users,DC=NStordemo,DC=corp
 - serviceSearchDescriptor=group:CN=Users,DC=NStordemo,DC=corp
 - serviceSearchDescriptor=netgroup:CN=Users,DC=NStordemo,DC=corp

2. If you must provide additional service search descriptors, type y, else type N to use the defaults or leave an empty entry to select the default which is N.

 Would you like to modify service descriptors? [y/N] N

 Attribute mappings:

 - attributeMap=shadow:userpassword=userPassword
 - attributeMap=shadow:shadowflag=shadowFlag
 - attributeMap=passwd:loginshell=loginShell
 - attributeMap=passwd:homedirectory=unixHomeDirectory
 - attributeMap=passwd:uidnumber=uidNumber
 - attributeMap=passwd:gidnumber=gidNumber
attributeMap=passwd:gecos=cn
attributeMap=group:gidnumber=gidnumber
attributeMap=group:memberuid=memberuid
attributeMap=group:userpassword=userPassword
objectClassMap=shadow:shadowaccount=user
objectClassMap=passwd:posixaccount=User
objectClassMap=group:posixgroup=group

3. If you must provide custom attribute mappings, type y else skip or type N to use the defaults.
4. If needed modify the extra attributes too.
5. Validate all settings before completing the configuration.
6. To apply the LDAP settings, type y.

LDAP client successfully configured

Configuring NexentaStor as LDAP client Manually

Recommendations for Configuring NexentaStor as LDAP Client Manually

When configuring LDAP client manually, specify the LDAP attributes on the command line. Any unspecified attributes will be assigned their default values. For a complete list of the attributes, see ldapclient man pages.

- At least one server must be specified in the defaultServerList or the preferredServerList attributes.
- Network clients can use either an authenticated or an unauthenticated connection to access the directory service in the LDAP server. You may configure the NexentaStor LDAP client to have either credential level of either anonymous or proxy.

Credential level - Credential level is the identity that the LDAP clients use to contact the LDAP directory.

- If you configure NexentaStor LDAP client to use an identity other than anonymous, then you must specify the authenticationMethod attribute to determine the authentication mechanism. NexentaStor as LDAP client supports the following authentication methods:
 - simple
 - sasl/GSSAPI
 - tls:none
 - tls:simple
- If you set the credential level to proxy and if at least one of the authentication methods requires a bind DN, then you must set the proxyDN and proxyPassword attribute values. In addition, if you allow to update the local password file through the attribute enableShadowUpdate, the adminDN and adminPassword values must be set.
• If you configure NexentaStor LDAP client to use self as the credential level, then the authenticationMethod must be sasl/GSSAPI. If the authenticationMethod is sasl/GSSAPI, the hosts and ipnodes of /etc/nsswitch.conf must be configured with DNS support.

Note:

• If you set the authentication method as simple, the bind password will be sent in the clear to the LDAP server.

• If you set the authentication methods to one that uses TLS (transport layer security), the entire session will be encrypted and you will need to install the appropriate certificate databases to use TLS.

• Note that the tls:none authentication method requires a credential level of proxy to take effect.

To configure NexentaStor as LDAP client manually:

```

Example:

CLI@nexenta> ldapclient [-v | -q] manual credentialLevel=proxy authenticationMethod=simple proxyDN="cn=ldap-proxy,cn=Users,dc=w2012-idmu,dc=corp" proxyPassword=Nexenta123 defaultSearchBase=dc=w2012-idmu,dc=corp domainName=w2012-idmu.corp defaultServerList=10.3.64.20,10.3.64.21 attributeMap=passwd:gecos=cn attributeMap=passwd:homedirectory=unixHomeDirectory objectClassMap=group:posixGroup=group objectClassMap=passwd:posixAccount=user objectClassMap=shadow:shadowAccount=user serviceSearchDescriptor='passwd:cn=users,dc=w2012-idmu,dc=corp?sub' serviceSearchDescriptor='group:cn=users,dc=w2012-idmu,dc=corp?sub'
```

Verifying the LDAP Client Configuration

To verify that the LDAP client configuration was created successfully

1. Type

```
CLI@nexenta> ldapclient status
NS_LDAP_FILE_VERSION= 2.0
NS_LDAP_BINDDN= CN=Administrator,CN=Users,DC=NStordemo,DC=corp
```
NS_LDAP_BINDPASSWD= {NS1}b337aa6b85c6416040
NS_LDAP_SERVERS= 10.3.76.181
NS_LDAP_SEARCH_BASEDN= DC=NStordemo,DC=corp
NS_LDAP_AUTH= simple
NS_LDAP_CACHETTL= 0
NS_LDAP_CREDENTIAL_LEVEL= proxy
NS_LDAPSERVICE_SEARCH_DESC= passwd:CN=Users,DC=NStordemo,DC=corp
NS_LDAPSERVICE_SEARCH_DESC= group:CN=Users,DC=NStordemo,DC=corp
NS_LDAPSERVICE_SEARCH_DESC= netgroup:CN=Users,DC=NStordemo,DC=corp
NS_LDAPATTRIBUTEMAP= group:userpassword=userPassword
NS_LDAPATTRIBUTEMAP= group:memberuid=memberuid
NS_LDAPATTRIBUTEMAP= group:gidnumber=gidnumber
NS_LDAPATTRIBUTEMAP= passwd:gecos=cn
NS_LDAPATTRIBUTEMAP= passwd:gidnumber=gidNumber
NS_LDAPATTRIBUTEMAP= passwd:uidnumber=uidNumber
NS_LDAPATTRIBUTEMAP= passwd:homedirectory=unixHomeDirectory
NS_LDAPATTRIBUTEMAP= passwd:loginshell=loginShell
NS_LDAPATTRIBUTEMAP= shadow:shadowflag=shadowFlag
NS_LDAPATTRIBUTEMAP= shadow:userpassword=userPassword
NS_LDAPOBJECTCLASSMAP= group:posixgroup=group
NS_LDAPOBJECTCLASSMAP= passwd:posixaccount=User
NS_LDAPOBJECTCLASSMAP= shadow:shadowaccount=user

Retrieving Information from LDAP Directory

To search and list naming information from LDAP directory:

1. Type:

```
CLI@nexenta> ldapclient list
```

```
dn: CN=Builtin,DC=NStordemo,DC=corp
dn: CN=Computers,DC=NStordemo,DC=corp
dn: CN=ForeignSecurityPrincipals,DC=NStordemo,DC=corp
dn: CN=Infrastructure,DC=NStordemo,DC=corp
dn: CN=Keys,DC=NStordemo,DC=corp
dn: CN=LostAndFound,DC=NStordemo,DC=corp
dn: CN=Managed Service Accounts,DC=NStordemo,DC=corp
dn: CN=NTDS Quotas,DC=NStordemo,DC=corp
dn: CN=Program Data,DC=NStordemo,DC=corp
```
Using LDAP Search

Use this command to open a connection to the specified server and to locate entries based on a specified search filter. You can restrict the search results for an entry by listing only the attributes you wish to retrieve. If you do not specify the list of attributes in the search query, the search will return all regular attributes based on the permission set in the directory. See the Examples below for information on how to use the Search command.

For operational attributes to be returned as a result of a search operation, they must be explicitly specified in the search command.

LDAP search command must use the following format.

```
CLI@nexenta> ldapclient search [-vxLZ] [--dn=<dn>] [--passwd=<passwd>]
    [--host=<host>]
    [--scope=<scope>] [--search-base=<base>]
    [--version=<version>] [--hoplimit=<hoplimit>]
    [--proxy-dn=<proxyDN>] [--certificate=<certificate>]
    [--port=<port>] [--deref=<deref>] [--time=<timelimit>]
    [--size=<sizelimit>] [--db-passwd=<passwd>]
    [--authzid=<authzid>] [--sort=<attrs>]
    [--locale=<locale>] [--attr=<keyvalue>]
    <filter> [attribute]
```

Using `<base>`

Use this option to enter the base distinguished name. Specify the entry in the directory from which searches initiated by LDAP clients should occur.

```
CLI@nexenta> ldapclient search -b "dc=example,dc=com" "objectclass=*"
<filter> <attributes>
```

Using `<filter>`

Use this option to list the entries to be returned for a search query. For example, you can specify objects in the filter such as users, groups, contacts, and so on. Multiple search filters also can be specified directly on the command line.

Refer to RFC 2254 for String representation of LDAP filters.
Using <attributes>

When searching for an entry you can specify only the attributes you wish to view associated with the search filter. If you do not specify any, all attributes will be listed for the type of entry.

Some examples of attributes that people entries include are the following:

- **cn** for the person’s common name.
- **sn** for the person’s surname, last name, or family name.
- **telephoneNumber** for the person’s telephone number.

Examples With and Without Attributes

Following are some examples of LDAP search queries. The following example specifies a search for the common name “Administrator” and the attribute **objectSid** associated with the user=

Example:1 (with an attribute **objectSid)**

```
CLI@nexenta> ldapclient search -H 10.3.77.192 -D "Administrator@domain.com" -w "password" -s sub -b "dc=nexenta,dc=lol" "(&(objectClass=user)(cn=Administrator))" distinguishedName objectSid 
version: 1
distinguishedName: CN=Administrator,CN=Users,DC=nexenta,DC=lol
objectSid: : AQUAAAAAAAUVAAAA7PpgU2996zM8VinL9AEAAA
```

Example:2 (without any attributes)

The following example queries the LDAP server to resolve **cn=Administrator**. This query returns all entries that contain the common name Administrator.

```
CLI@nexenta> ldapclient search -x -L -D Administrator@nstordemo.corp -w Nexenta@1 --host=10.3.76.181 -b "dc=nstordemo,dc=corp" "(&(objectClass=user)(cn=Administrator))"
dn: CN=Administrator,CN=Users,DC=NStordemo,DC=corp
version: 1
objectClass: top
objectClass: person
objectClass: organizationalPerson
objectClass: user
cn: Administrator
description: Built-in account for administering the computer/domain
distinguishedName: CN=Administrator,CN=Users,DC=NStordemo,DC=corp
instanceType: 4
whenCreated: 20170729003057.0Z
```
whenChanged: 20170809173838.0Z
uSNCreated: 8196
memberOf: CN=Group Policy Creator Owners,CN=Users,DC=NStordemo,DC=corp
memberOf: CN=Domain Admins,CN=Users,DC=NStordemo,DC=corp
memberOf: CN=Enterprise Admins,CN=Users,DC=NStordemo,DC=corp
memberOf: CN=Schema Admins,CN=Users,DC=NStordemo,DC=corp
memberOf: CN=Administrators,CN=Builtin,DC=NStordemo,DC=corp
uSNChanged: 34762
name: Administrator
objectGUID: HFW/yT9FqUoDBjdVD1vGA==
userAccountControl: 66048
badPwdCount: 0
codePage: 0
countryCode: 0
badPasswordTime: 131466962456226629
lastLogoff: 0
lastLogon: 131473125360798822
logonHours: /////////////////
pwdLastSet: 131457592837075120
primaryGroupID: 513
userParameters:
bTcIbEAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg
objectSid: AQUAAAAAAAUVAAAAz+u97om/qvz4w/ek9AEAAA==
adminCount: 1
accountExpires: 0
logonCount: 27
sAMAccountName: Administrator
sAMAccountType: 805306368
objectCategory: CN=Person,CN=Schema,CN=Configuration,DC=NStordemo,DC=corp
isCriticalSystemObject: TRUE
msNPAllowDialin: TRUE
dSCorePropagationData: 20170729004714.0Z
dSCorePropagationData: 20170729004714.0Z
dSCorePropagationData: 20170729003202.0Z
dSCorePropagationData: 16010101181216.0Z
lastLogonTimestamp: 13146696384704732
Uninitializing NexentaStor LDAP Client

Unconfigure command restores NexentaStor LDAP client to the state the appliance was prior to the recent execution of init, modify, or manual operation. When you run this command, the command performs an Undo of the last operation. The reset will happen successfully only if you initialized NexentaStor using the configure command of ldapclient.

`CLI@nexenta> ldapclient unconfigure`

Configuring Write-Back Cache

NexentaStor Write Back Cache (WBC) is a new experimental feature that can significantly improve write performance of hybrid pools. As of NexentaStor 5.2, the WBC feature is in experimental state and is not supported in production environments. This restriction will be removed in a future NexentaStor 5 maintenance update.

To use WBC, a pool must first be configured with a Special VDEV comprising a minimum of two mirrored SSDs. Once a pool has a Special VDEV, Write Back Cache can be enabled on file systems, volume groups and volumes in that pool and accelerate write IOs to these datasets. When WBC is enabled on a dataset, all incoming write IOs for that dataset are first handled by the Special VDEV, benefiting from the high IOPS and low latency of the SSDs. The write IOs are then asynchronously flushed to the backend Data VDEV in the pool. This is the main difference between ZIL/SLOG and WBC: in the case of a SLOG, synchronous write IOs are sent to both SLOG and backend Data VDEVs at the same time, while in the case of WBC, all write IOs are first exclusively handled by the Special VDEV, and only later flushed to the Data VDEV, allowing the pool to efficiently pair the random IOPS capability of the Special VDEV SSDs with the throughput capability of the backend Data VDEV. Write IOs effectively flow through the WBC and eventually always end-up on the backend Data VDEVs.

The WBC property is handled like another property and is hierarchical in nature: enabling WBC will apply to all children file systems, or all volumes in a volume group.

<table>
<thead>
<tr>
<th>Note:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Special vdevs should only be of type SSD.</td>
</tr>
<tr>
<td>WBC can be enabled/disabled on a filesystem, if the pool to which it belongs has a Special device configured.</td>
</tr>
<tr>
<td>WBC can be disabled for all pool's datasets and all WBC data blocks can be migrated from special to normal vdev's when removing special device from given pool.</td>
</tr>
</tbody>
</table>

To create a pool with a special vdev:

`CLI@nexenta> pool create [-fnv] [-R altroot] [-o <properties>] <pool> <vdev>`

Example:

`CLI@nexenta> pool create poola mirror 2 c1t5000C50059935FADF0 c1t5000C500596E4E0FADF0 c1t5000C5005972AB03D0 c1t5000C5005993693FADF0 special mirror c1t5000C50041ABB9BB0D0 c1t5000C50041AC5A17D0`
To view the status of the pool poola you created:

CLI@nexenta> pool status <name>
Example:

CLI@nexenta> pool status poola
pool poola
health ONLINE
scan none requested
trim none requested
devices
VDEV HEALTH READ WRITE CKSUM LOCATION
poola ONLINE 0 0 0 -
mirror-0 ONLINE 0 0 0 -
c1t5000C50059935FAFd0 ONLINE 0 0 0 5003048000338d3f:5
c1t5000C500596E4E0Fd0 ONLINE 0 0 0 5003048000338d3f:6
mirror-1 ONLINE 0 0 0 -
c1t5000C5005972AB03d0 ONLINE 0 0 0 5003048000338d3f:7
c1t5000C5005993693Fd0 ONLINE 0 0 0 5003048000338d3f:8
special ONLINE 0 0 0 -
mirror-2 ONLINE 0 0 0 -
c1t5000C50041ABBBD0 ONLINE 0 0 0 5003048000338d3f:4
c1t5000C50041AC5A17d0 ONLINE 0 0 0 5003048000338d3f:5

To add special vdevs to the created pool:

CLI@nexenta> pool add [-fnv] <pool> <vdev>
Example:

CLI@nexenta> pool add poola special mirror <list of vdevs to be added to
the pool>

To create a file system on poola:

CLI@nexenta> filesystem create [-pnv] [-o <properties>] <filesystem>
Example:

CLI@nexenta> filesystem create poola/smb_test

To verify WBC on the created filesystem:

CLI@nexenta> filesystem get wbcache poola/smb_test

<table>
<thead>
<tr>
<th>PATH</th>
<th>PROPERTY</th>
<th>VALUE</th>
<th>SOURCE</th>
</tr>
</thead>
<tbody>
<tr>
<td>poola/smb_test</td>
<td>wbcache</td>
<td>no</td>
<td>INHERITED</td>
</tr>
</tbody>
</table>
To enable WBC on a vdev:

```
CLI@nexenta> filesystem set wbcache=yes poola/smb_test
```

You can also disable the write back cache on a dataset subtree by setting the `wbcache` property to false, no, or off.

It is possible to turn off WBC on a dataset, or on all datasets in the pool, let the special VDEV drain to the backend pool and remove the Special VDEV from that pool. The time required to drain an active WBC is typically measured in seconds to minutes.

Some supported operations:

- Disable WBC for given dataset (filesystem, volume or volumegroup)
- Remove special vdev from existing pool

To disable WBC for a given dataset:

1. Disable by running the following command:

```
CLI@nexenta> filesystem set [-rnv] <properties> <filesystem>
```

Example:

```
CLI@nexenta> filesystem set wbcache=no poola/smb_test
```

2. Wait for data migration to complete.

3. Detach first special mirror component.

```
CLI@nexenta> pool detach [-nv] <pool> <disk>
```

Example:

```
CLI@nexenta> pool detach poola c1t5000C50041AC5A17d0
```

4. Verify if the device is detached.

```
CLI@nexenta> pool status poola
```

```diff
pool      poola
health    ONLINE
scan none requested
trim none requested
devices

VDEV      HEALTH   READ WRITE CKSUM LOCATION
poola     ONLINE   0    0     0     -
mirror-0  ONLINE   0    0     0     -
c1t5000C50059935FAFD0 ONLINE 0 0 0 5003048000338d3f:5
c1t5000C500596E4E0FD0 ONLINE 0 0 0 5003048000338d3f:6
mirror-1 ONLINE 0 0 0 -
c1t5000C5005972AB03D0 ONLINE 0 0 0 5003048000338d3f:7
c1t5000C5005993693FD0 ONLINE 0 0 0 5003048000338d3f:8
special ONLINE 0 0 0 -
```
c1t5000C50041ABB9BBd0 ONLINE 0 0 0 5003048000311a3f:4

5. Remove second special mirror component.

CLI@nexenta> pool remove <pool> <disk>

Example:

CLI@nexenta> pool remove poola c1t5000C50041AC5A17d0

Additional Resources

In the previous sections, you:

- Configured a network
- Created a pool and added redundancy, cache devices, and logs.
- Created and shared iSCSI volumes, SMB and NFS file systems.
- Configured HA clusters.
- Created, viewed, and scheduled snapshots.
- Created, viewed, and scheduled replication services.

You can apply these steps to your own data center needs augmented by the following resources to extend your knowledge of configuring NexentaStor using the CLI. Use the additional documentation downloadable from https://nexenta.com/products/documentation to manage your storage appliance using REST APIs, the vCenter plugin, and the NexentaFusion GUI.